

Unravelling the mental health status of respondents to population health surveys using tree-based methods

A. Ba, E. Gallic, P. Michel, A. Paraponaris

10th Scientific Symposium of the AHEAD
Research Network
December 12, 2025

amU Aix
Marseille
Université

 amse
école d'économie d'aix-marseille
aix-marseille school of economics

Motivations

Toinette, Act II, Scene 2, in Molière, *The imaginary invalid*, 1673

He walks, sleeps, eats and drinks like anyone; but it does not exclude that he is extremely ill.

Photo credit: Christophe Raynaud de Lage, coll. Comédie-Française

Motivations

► Puzzle: research on **anxious and depressive disorders**

- **under-reported** by patients and/or **under-diagnosed** by health professionals (Fagagas et al., 2007; Freeling et al., 1985; Higgins, 1994; McQuaid et al., 1999; Sheehan, 2004),
- mental health troubles may be **over-diagnosed** (Aragonès et al., 2006; Klinkman et al., 1998).

► Both situations may lead to:

- detrimental care,
- mismatch between people in need and those who receive antidepressant drugs and/or anxiolytics.

Related Literature

- ▶ Unrecognized anxiety-depressive disorders may:
 - be fueled by specific **social** and **occupational** situations;
 - have strong **adverse consequences on outcomes** regarding:
 - health ([Falagas et al., 2007](#)),
 - healthcare consumption ([Rost et al., 1998; Sheehan, 2004](#)),
 - occupation ([Broadhead et al., 1990; Egede, 2007; Asami et al., 2014; Lim et al., 2000; Simon et al., 2001; Hilton et al., 2010; Stewart et al., 2003](#)).

This paper

Source: Davodeau, E. and Hermenier, C. (2019). *Les couloirs aériens*. Futuropolis.

- ▶ Documentation of the big picture of **people with unrecognized mental health troubles**.
- ▶ Using **survey data** of French 15+ yo matched with **yearly healthcare consumption** data from the French Sickness Fund.
- ▶ **Classification** of people using tree-based machine learning methods.
- ▶ Description of **factors associated with non-recognition** of anxiety and depression symptoms (using SHAP values).

Main Results

Several **profiles** emerge (through descriptive statistics and predictions from ML algo.):

- ▶ A strong **income effect**: lower personal disposable income is one of the most important predictors of unrecognised anxiety/depression.
- ▶ Marked **occupational arduousness**:
 - feeling of not having enough time to do one's job,
 - low decision latitude,
 - demanding or physically painful working conditions.
- ▶ A significant **gender effect**, consistent with epidemiological evidence on the prevalence of anxiety and depressive disorders.
- ▶ Reduced **social participation**: weaker engagement in group activities, fewer social interactions (friends, colleagues, organisations).
- ▶ **Specific medical consumption patterns**: higher use of pharmacy products and more consultations with general practitioners, partly reflecting chronic conditions.

Roadmap

1. Introduction

2. Data

3. Methodology

4. Results

5. Conclusion

2. Data

Source: two datasets matched at the individual level

► **Survey Data** (Enquête Santé et Protection Sociale, ESPS, 2012)

- Representative sample of individuals aged 15+ covered by social security,
- Socio-professional characteristics,
- Self-reported health, chronic conditions, MHI-5 mental health score,
- Regional characteristics,
- Working conditions,
- Social participation and frequency of social interactions.

► **Healthcare consumption data** (French health insurance liquidation data)

- Expenses, reimbursement, co-payment, extra-fees, deductible, no. medical sessions,
- Outpatient, GP, Specialist, Pharmacy, Physiotherapist, Nurse, Dentist, Equipment, Transport, Optical, Prostheses, Emergency.

► **After cleaning data and targeting people:** $N = 5,293$.

3. Methodology

3.1. Classification

A Classification Problem

The survey population is segmented using two variables:

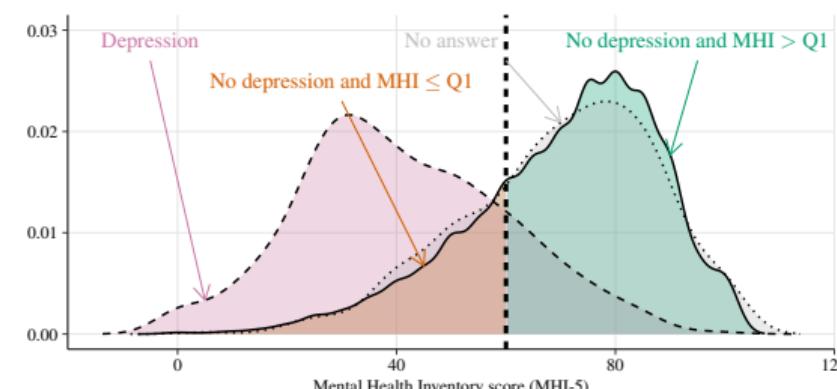
- ▶ Self-report of **depression status** (Experienced depression over the past 12 months)
- ▶ Calculation of the **Mental Health Inventory (MHI-5) score** ([Ware et al., 2001](#))
 - Based on the answers to 5 items (mental burden, concerning nervousness, self-motivation, peacefulness, sadness and happiness),
 - The MHI-5 scores takes values between 0 (poorest mental health) to 100,
 - The first quartile of the distribution in the sample is $Q_1 = 60$.

A Classification Problem

Among respondents who **did not report having experienced depression** during the previous 12 months:

- ▶ \bar{D}_{Q1^-} : people with a **low MHI-5 score** ($\le Q_1$) (*imaginary healthy patients*)
- ▶ \bar{D}_{Q1^+} : people with a **high MHI-5 score** ($> Q_1$)

Figure 1: Density of MHI-5 scores according to self-reported depression status.



Notes: The MHI-5 has a score of 0 to 100, where a score of 100 represents optimal mental health. Vertical bar: first quartile of the distribution when all individuals were considered, regardless of their self-reported depression status (MHI-5 score= 60).

A Classification Problem

Table 1: Size of groups of individuals according to their MHI-5 score and self-reported depression status.

	Self-reported status		Total
	Depression	No Depression	
MHI-5 $\leq Q_1$	572 (4.8%)	3,193 (26.9%)	3,765 (31.7%)
MHI-5 $> Q_1$	101 (0.9%)	8,006 (67.5%)	8,107 (68.2%)
Total	673 (5.6%)	11,199 (94.3%)	11,872 (100%)

Notes: This table shows the number of individuals in each sub-population based on self-reported depression status and the evaluated MHI-5 score. Q_1 represents the first quartile of the MHI-5 score distribution for all respondents. The value of Q_1 is 60.

In the sample of indiv. who did not report having experienced depression :

- ▶ **No Depression & $MHI-5 \leq Q_1$** : 3,193 of 11,199 (28.5%): **Imaginary healthy**
- ▶ **No Depression & $MHI-5 > Q_1$** : 8,006 of 11,199 (71.5%).

Classification Task

- ▶ **Objective:** discriminate between \bar{D}_{Q1^-} (**imaginary healthy**) and \bar{D}_{Q1^+} (**healthy**) individuals.
- ▶ **Data splitting:**
 - **Training sample** (60%): used for model estimation and **repeated k-fold cross-validation** to tune hyperparameters,
 - **Validation sample** (20%): used to select the **probability threshold** that maximizes **sensitivity**,
 - **Test sample** (20%): held out for the final evaluation of each model.
- ▶ **Fit three classifier:** Random Forest, XGBoost, and penalized logistic regression.
- ▶ **Model comparison:**
 - Final evaluation on the **test** sample,
 - Primary metric: **sensitivity** (correct identification of \bar{D}_{Q1^-}),
 - Secondary metrics reported: specificity, PPV, NPV, and AUC.

Ensemble Methods

- ▶ **Random Forest** (Breiman, 2001) is an **ensemble of decision trees** built on bootstrap samples of the data. Each tree is trained on a slightly different subset of observations.
 - At each split, a **random subset of variables** is considered (decorrelates the trees),
 - Final prediction: average of predicted prob. across all trees.
 - Hyperparameters: `mtry=9`, `min.node.size=50`, `ntree=500`
- ▶ **XGBoost** (Chen and Guestrin, 2016) builds an **additive sequence of decision trees**, where each new tree focuses on the **errors made by the previous ones**.
 - Trees are learned sequentially to **minimize a logistic loss**,
 - Misclassified observations receive more weight in later iterations,
 - A learning rate controls how much each tree contributes to the final model.
 - Hyperparameters: `nrounds=500`, `max_depth=5`, `colsample_bytree=8`, `eta=0.01`, `gamma=5`, `min_child_weight=150`, `subsample=0.9`

Penalized Logistic Regression

► **Penalized Logistic Regression** (Friedman et al., 2010): a logistic regression with a **penalty** added to the loss function to avoid overfitting and to stabilize estimation in the presence of many correlated predictors:

$$\min_{\beta_0, \beta} \frac{1}{N} \sum_{i=1}^N l(y_i, \beta_0 + \beta^T x_i) + \underbrace{\lambda [(1 - \alpha) \|\beta\|_2^2 / 2 + \alpha \|\beta\|_1]}_{\text{elastic net penalty}},$$

where $l(\cdot)$ is the negative log-likelihood, α controls the balance between L1 and L2 penalties, and λ controls the overall regularisation strength.

- Hyperparameters: $\text{alpha}=0.2909091$, $\text{lambda}=0.01157483$.

3.2. Model Explanations

Explanation of Predictions

- ▶ Once the model is estimated, we would like to **explain the predictions**, using an **XAI technique**.
- ▶ Generally, XAI techniques are used to **decompose model predictions** into **feature-wise contributions** (Friedman, 2001; Ribeiro et al., 2016; Mothilal et al., 2020).
- ▶ **Cooperative game theory** offers a useful framework for attributing predictions to input features, with the **Shapley value** (Shapley, 1951; Hart, 1989) being a widely used allocation rule (Lundberg and Lee, 2017; Heskes et al., 2020; Covert et al., 2021; Zhang and Xu, 2023).
 - In a **collaborative game**, the Shapley value corresponds to the **average expected marginal contribution of a player** (considering all possible combinations of players).

SHAP

Objective: Attribute a ML model prediction $f(\mathbf{x})$, for an individual $\mathbf{x} \in \mathbb{R}^d$, to each of the d features used to train the ML model f :

$$f(\mathbf{x}) = \phi_0 + \sum_{j=1}^d \phi(j), \text{ with } \phi_0 = \mathbb{E}_{\mathbf{X}}[f(\mathbf{X})].$$

- ▶ **SHAP** (Lundberg and Lee, 2017) uses Shapley values from **cooperative game theory** (Shapley, 1951) to compute $\phi(j)$ (**SHAP value**), depending on a **value function** v .

$$\forall j \in \{1, \dots, d\}, \quad \phi(j) = \sum_{A \subseteq \{1, \dots, d\} \setminus \{j\}} \frac{|A|!(d - |A| - 1)!}{d!} [v(A \cup \{j\}; \mathbf{x}) - v(A; \mathbf{x})].$$

- ▶ To select v , **one desired constraint** is that $v(D; \mathbf{x}) = f(\mathbf{x})$. We can choose:

$$v(A; \mathbf{x}) = \mathbb{E}[f(\mathbf{X}) \mid \mathbf{X}_A = \mathbf{x}_A], \text{ for the individual } \mathbf{x} = (\mathbf{x}_A, \mathbf{x}_{A^c}).$$

3.3. Clustering

Clustering on SHAP values

- ▶ **SHAP values** are computed **at the level of each observation**.
- ▶ It may be possible to **group the respondents** depending on their SHAP values.
- ▶ We focus on people predicted "**Imaginary healthy patient**" by the model.
- ▶ To do so:
 - **Hierarchical clustering**,
 - Selecting the number of groups depending on the Silhouette score [Rousseeuw \(1987\)](#).

4. Results

4.1. Descriptive Statistics

Descriptive Statistics

Variable	Self-reported No depression (n = 5,305)	MHI-5 $\leq Q1$ (n = 1,598)	MHI-5 $> Q1$ (n = 3,707)	p-value
MHI-5 Score	70 (± 18)	48 (± 12)	80 (± 10)	$< 10^{-3}$
Social and demographic characteristics				
Age	49 (± 19)	50 (± 18)	48 (± 18)	$< 10^{-3}$
Gender: <i>Female</i>	52%	59%	49%	$< 10^{-3}$
Couple	65%	60%	68%	$< 10^{-3}$
Health status and healthcare consumption				
Good/very good SAH	93%	84%	97%	$< 10^{-3}$
Self-reported long-term condition	19%	27%	16%	$< 10^{-3}$
Long-term cond. recog. by health insur.	19%	26%	17%	$< 10^{-3}$
No. GP visits	4.7 (± 5.0)	6.1 (± 6.2)	4.1 (± 4.3)	$< 10^{-3}$
No. Specialists visits	3.4 (± 4.4)	4.1 (± 5.0)	3.1 (± 4.1)	$< 10^{-3}$
Outpatient expenses (€)	1470 (± 2528)	2024 (± 3306)	1230 (± 2060)	$< 10^{-3}$
Waiver GP	3%	7%	2%	$< 10^{-3}$
Waiver Dental care	13%	19%	10%	$< 10^{-3}$

Descriptive Statistics: Health Condition

Variable	Self-reported No depression (n = 5,305)	MHI-5 $\leq Q1$ (n = 1,598)	MHI-5 $> Q1$ (n = 3,707)	p-value
Self-reported health-related conditions				
Asthma	6.8%	10.3%	5.2%	$< 10^{-3}$
Bronchitis	5.8%	10.0%	4.0%	$< 10^{-3}$
Heart Attack	0.6%	1.2%	0.4%	0.002
Artery Disease	1.9%	3.1%	1.5%	$< 10^{-3}$
Hypertension	11.9%	16.0%	10.2%	$< 10^{-3}$
Stroke	0.5%	0.9%	0.4%	0.037
Osteoarthritis	13.36%	18.7%	11.0%	$< 10^{-3}$
Low Back Pain	20.4%	28.7%	16.8%	$< 10^{-3}$
Neck Pain	14.6%	22.1%	11.4%	$< 10^{-3}$
Diabetes	8.4%	14.0%	6.0%	$< 10^{-3}$
Allergy	14.6%	19.6%	12.4%	$< 10^{-3}$
Cirrhosis	0.1%	0.2%	0.1%	0.253
Urinary Incontinence	4.2%	7.3%	2.8%	$< 10^{-3}$

Descriptive Statistics: Other variables

Variable	Self-reported No depression (n = 5,305)	MHI-5 ≤ Q1 (n = 1,598)	MHI-5 > Q1 (n = 3,707)	p-value
SES and working conditions				
Personal disposable income (€)	1609 (± 1008)	1424 (± 806)	1690 (± 1074)	$< 10^{-3}$
Has to hurry to do job (always/often)	24%	29%	22%	$< 10^{-3}$
Very little freedom to do job, always/often	8%	11%	7%	$< 10^{-3}$
Job allows to learn new things, always/often	25%	21%	28%	$< 10^{-3}$
Colleagues help to carry out tasks, always/often	20%	16%	22%	$< 10^{-3}$
Repetitive work under time constraints, always/often	9%	9%	7%	$< 10^{-3}$
Must carry heavy loads, always/often	11%	12%	10%	$< 10^{-3}$
Painful postures, always/often	17%	19%	17%	$< 10^{-3}$
Harmful/toxic substances/products, always/often	10%	10%	10%	0.002
Social participation				
Participation in group activities	35%	29%	38%	$< 10^{-3}$
Meeting w/ family outside hh, everyday/ ≥ 1 a week	56%	54%	58%	$< 10^{-3}$
Meeting w/ people in organizations, everyday/ ≥ 1 a week	20%	16%	22%	$< 10^{-3}$
Meeting w/ colleagues outside work, everyday/ ≥ 1 a week	14%	12%	14%	$< 10^{-3}$

4.2. Classification with Ensemble Machine Learning

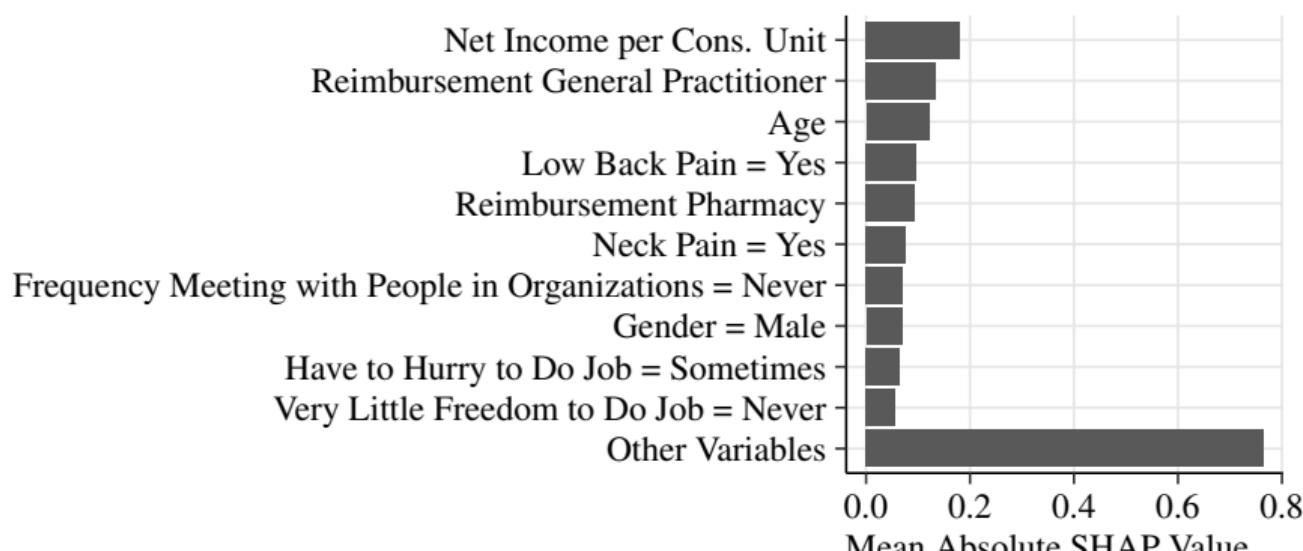
Performance of the Estimation

Method	Accuracy		Sensitivity		Specificity		ROC-AUC	
	Train	Test	Train	Test	Train	Test	Train	Test
Random Forest	0.812	0.726	0.383	0.144	0.997	0.977	0.96	0.72
XGBoost	0.676	0.667	0.666	0.690	0.680	0.658	0.74	0.71
Pen. Log. Reg.	0.740	0.749	0.276	0.301	0.941	0.942	0.75	0.73

- ▶ **Accuracy**: Overall proportion of correct classifications (**Imaginary Healthy** + **Healthy**) among all predictions.
- ▶ **Sensitivity**: measures how well the model detects the **Imaginary Healthy** (proportion of **imaginary healthy** who are correctly classified as such).
- ▶ **Specificity**: the proportion of **healthy individuals** correctly classified as healthy.
- ▶ **ROC–AUC**: summarizes the trade-off between sensitivity and specificity across all thresholds (higher AUC: better overall discrimination).

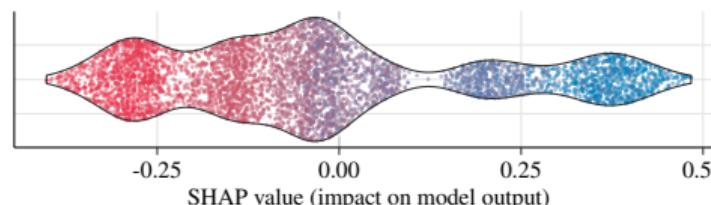
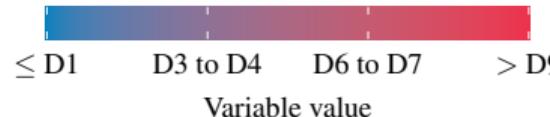
4.3. Interpretation with SHAP Values

Variable Importance (SHAP Values)

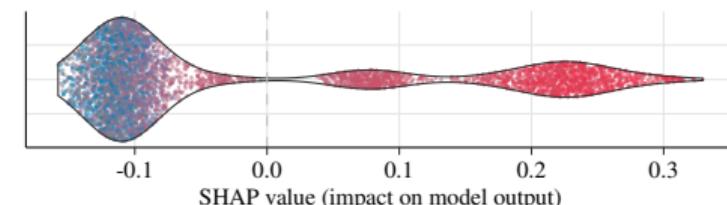
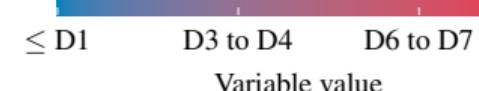


Variable Importance (2/4)

Impact of Variables on the Prob. of Being Classified as an **Imaginary Healthy Patient**.



(a) Net Income per Cons. Unit (€)

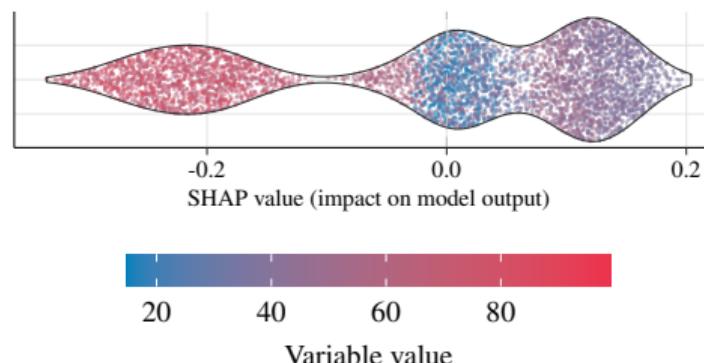


(b) Reimbursement General Practitioner (€)

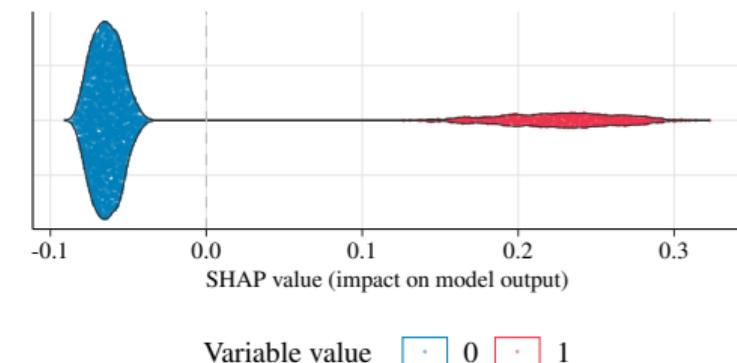
Note: The plots are ordered by variable importance with respect to the average absolute SHAP values. Each dot represents an individual. For points with a negative abscissa, the variable of interest has a downward effect on the probability of being classified as an imaginary healthy patient (\overline{D}_{Q1-}). For quantitative variables, the color of the points depends on the level of the variable of interest, ranging from blue for low values to red for high values. For the net income per consumption unit variable, the color scale ranges according to the empirical quantiles of the variable.

Variable Importance (3/4)

Impact of Variables on the Prob. of Being Classified as an **Imaginary Healthy Patient**.



(a) Age

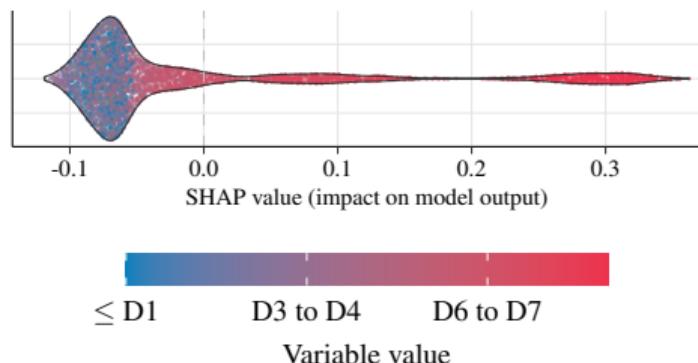


(b) Low Back Pain

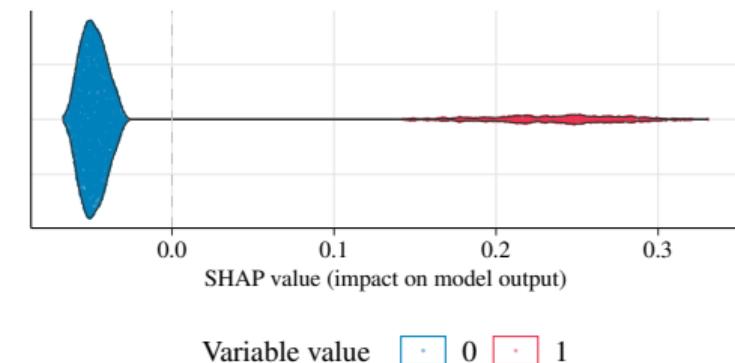
Note: The plots are ordered by variable importance with respect to the average absolute SHAP values. Each dot represents an individual. For points with a negative abscissa, the variable of interest has a downward effect on the probability of being classified as an imaginary healthy patient (\overline{D}_{Q1-}). For quantitative variables, the color of the points depends on the level of the variable of interest, ranging from blue for low values to red for high values.

Variable Importance (4/4)

Impact of Variables on the Probability of Being Classified as an **Imaginary Healthy Patient**.



(a) Deduct. Pharmacy (€)



(b) Neck Pain

Note: The plots are ordered by variable importance with respect to the average absolute SHAP values. Each dot represents an individual. For points with a negative abscissa, the variable of interest has a downward effect on the probability of being classified as an imaginary healthy patient (\overline{D}_{Q1-}). The color of the points depends on the level of the variable of interest, ranging from blue for low values to red for high values.

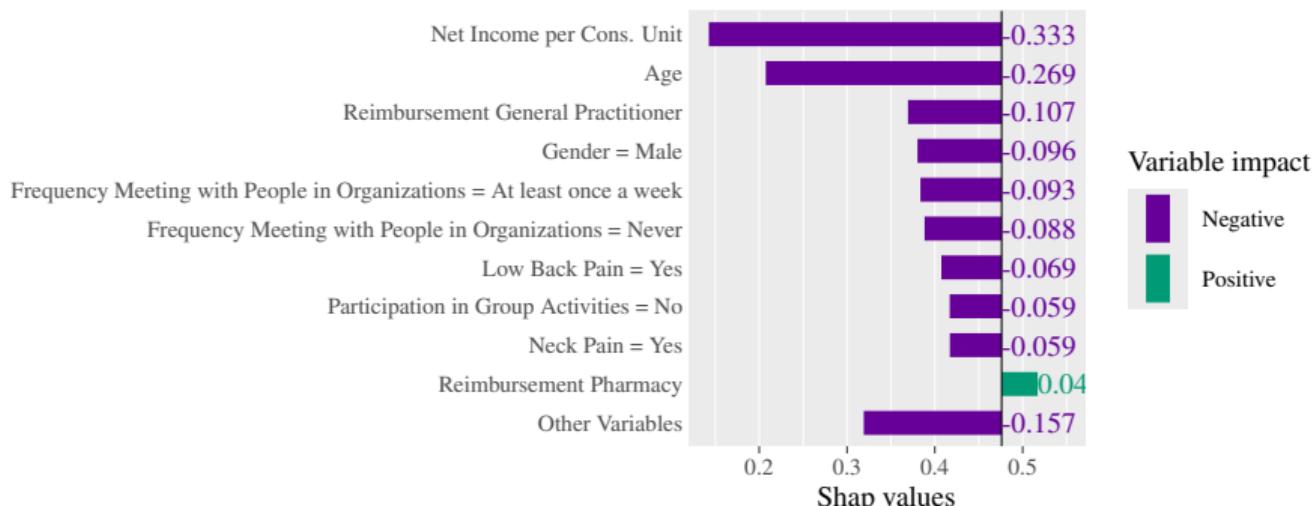
Individual Effects (1/2)

Decomposition of the Contribution of the Most Influential Variables to the Prediction

Deviation of Being Classified as an **Imaginary Healthy** Patient from the Baseline Value, for an **Individual with a Low Predicted Probability**

Predicted value: 0.217

Base value: 0.476



Note: Baseline value: average probability of being classified by the preferred model as an imaginary healthy patient (\overline{D}_{Q1-}) in the dataset.

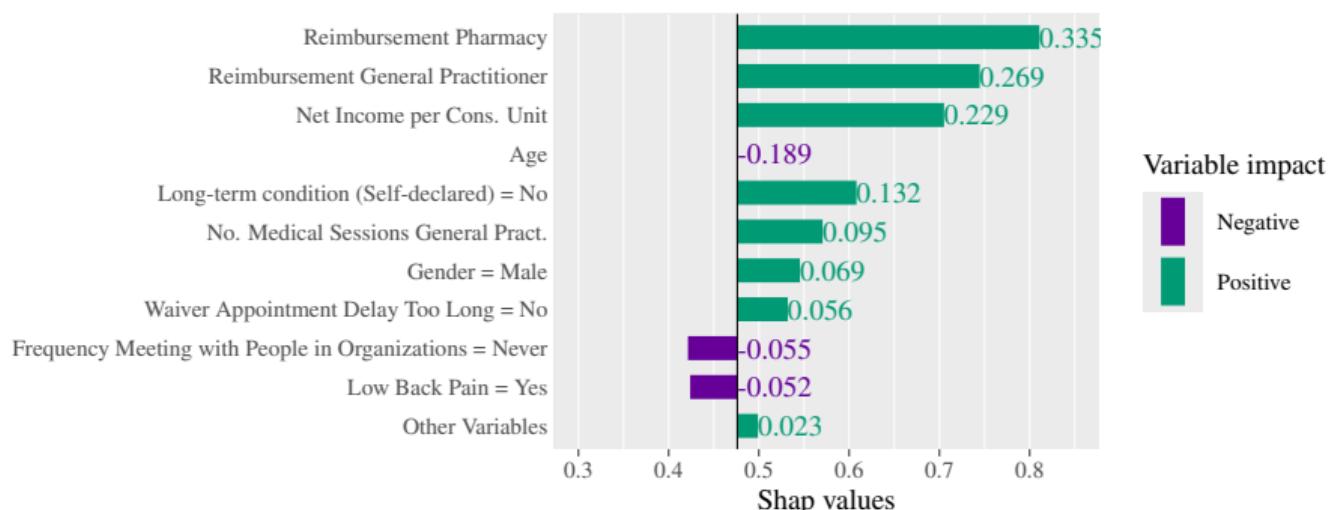
Individual Effects (2/2)

Decomposition of the Contribution of the Most Influential Variables to the Prediction

Deviation of Being Classified as an **Imaginary Healthy** Patient from the Baseline Value, for an **Individual with a High Predicted Probability**

Predicted value: 0.714

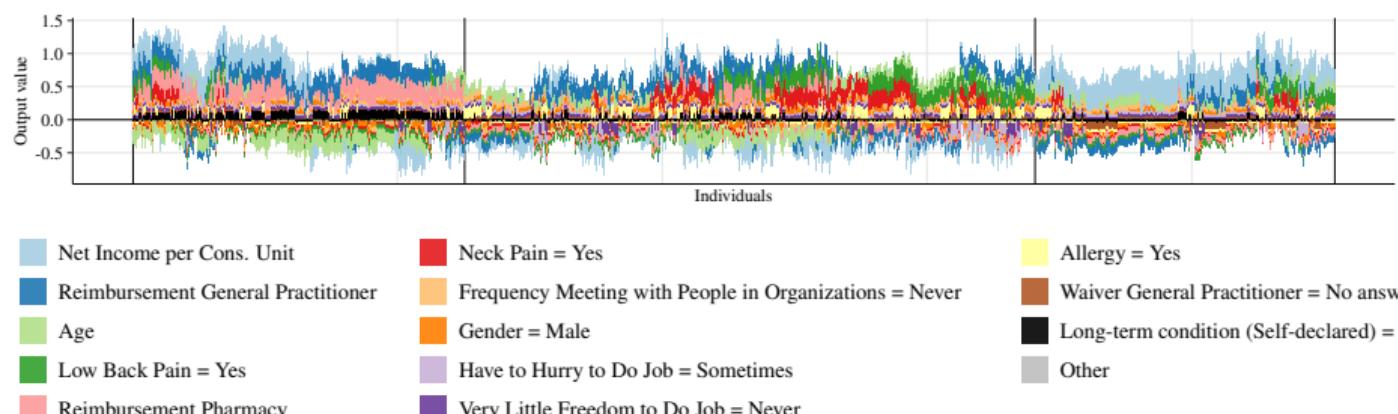
Base value: 0.476



Note: Baseline value: average probability of being classified by the preferred model as an imaginary healthy patient (\overline{D}_{Q1-}) in the dataset.

Clustering (1/2)

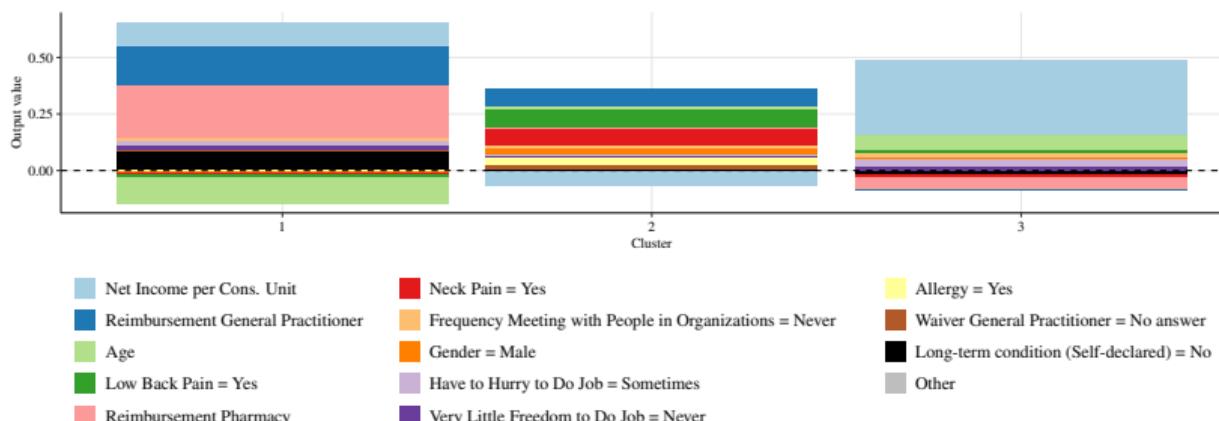
Decomposition of the Effect of the Most Important Variables on the Probability of Being Predicted as an **Imaginary Healthy** Patient for Individuals Predicted as Such.



Note: The reported contribution is relative to the baseline value (the average probability of being classified by the preferred model as an imaginary healthy patient (\overline{D}_{Q1-}) in the dataset) centered in zero. The observations are ordered according to their relative distance from each other (Ward's distance).

Clustering (2/2)

Decomposition of the Effect of the Most Important Variables on the Probability of Being Predicted as an **Imaginary Healthy** Patient for Individuals Predicted as Such.



Note: The reported contribution is relative to the baseline value (the average probability of being classified by the preferred model as an imaginary healthy patient (\bar{D}_{Q1-}) in the dataset) centered in zero.

la

(1) elderly & high-consumption patients; (2) average profiles with pain disorders; (3) younger economically deprived individuals with low healthcare use.

5. Conclusion

Conclusion

- ▶ Use of Machine Learning techniques to characterize individuals unaware of the presence of anxiety and depressive disorders
- ▶ Main results:
 - A significant **gender effect** consistent with epidemiological knowledge of the prevalence of anxiety and depressive disorders in the general population.
 - An **income effect**.
 - An important influence of **working and employment conditions** (low decision latitude, work intensity, demanding schedules).
 - Contributions from specific **patterns of medical consumption** (GP visits, pharmacy expenditures) → unrecognised underlying health problems in several clusters.
 - A **social participation** effect.
 - **Three distinct subgroups** of **imaginary-healthy** individuals: (1) elderly & high-consumption patients; (2) average profiles with pain disorders; (3) younger economically deprived individuals with low healthcare use.
- ▶ **Robustn. checks:** MHI-3 and Self-Assessed Health used as substitutes to MHI-5.

Research Agenda

- ▶ **Potential explanations for misperception of personal mental health troubles**
 - Psychometric properties of MHI-5: sensitivity and specificity,
 - Disease denial and illnesses masked by drugs,
 - Differential item functioning.
- ▶ Use of alternative measures from cooperative game theory as substitute to **Shapley's values** to measure the marginal contributions of different characteristics of each individual on the probability of ignoring their bad health condition (e.g., the core).

Conclusion

The Imaginary Healthy Patient
Amady Seydou Ba, Ewen Gallic, Pierre Michel, Alain Paraponaris

► To cite this version:

Amady Seydou Ba, Ewen Gallic, Pierre Michel, Alain Paraponaris. The Imaginary Healthy Patient. 2024. hal-04823939

HAL Id: hal-04823939
<https://hal.science/hal-04823939v1>
Preprint submitted on 6 Dec 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HAL
Working Paper

N° 6 novembre-décembre 2024 BIENNALE 99 pp. 801-986

**Revue
d'économie
politique**

Machine Learning in Economics

Arthur Chaperon, Emmanuel Rachet

Machine Learning in Economics

HAL open science 30, Ewen Gallic, Pierre Michel, Alain

Paraponaris. The Imaginary Healthy Patient

Isabelle Cordon, Amandine Fargues, Véronique Théba

Prediction of energy Poverty in France via Machine

Learning: Application to the Paris Region

Julien Daurat, Sébastien Le Gouez, René Waller

New evidence of interactions between macroeconomic

signals and the evolution of opportunity costs of

information in the regulated electricity

Isabelle Chabat, Cyril Delfosse

Media Coverage of the ECB's Technical Analysis

Charlotte Chabat, Sébastien Massé

Le traitement automatique du langage naturel

l'application des techniques de l'IA et ses perspectives pour les

sciences économiques

Le bien portant imaginaire

Methodes de Machine Learning pour la prediction de la precocite de l'emergence en France

Normalites and Heteroskedasticity between Variables and Contributions of Machine Learning Methods

Introduction to Machine Learning

La couverture médiatique relative à la BCE: une analyse textuelle

Automated Natural Language Processing: The

Contribution of Institutions and Challenges for

Economics

Lefebvre Daloz
DALOZ

**Special issue:
Machine learning & economics**

A. References

References |

Aragonès, E., Piñol, J. L. and Labad, A. (2006). The overdiagnosis of depression in non-depressed patients in primary care. *Family Practice* 23: 363–368, doi: 10.1093/fampra/cmi120.

Asami, Y., Goren, A. and Okumura, Y. (2014). Work Productivity Loss with Depression, Diagnosed and Undiagnosed, among Employed Respondents in an Internet-Based Survey Conducted in Japan. *Value in Health* 17: A463, doi: 10.1016/j.jval.2014.08.1289.

Breiman, L. (2001). Random Forests. *Machine Learning* 45: 5–32, doi: 10.1023/A:1010933404324.

Broadhead, W. E., Blazer, D. G., George, L. K. and Tse, C. K. (1990). Depression, disability days, and days lost from work in a prospective epidemiologic survey. *JAMA* 264: 2524–2528, doi: 10.1001/jama.1990.03450190056028.

Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '16. New York, NY, USA: Association for Computing Machinery, 785–794, doi: 10.1145/2939672.2939785.

Covert, I., Lundberg, S. and Lee, S.-I. (2021). Explaining by removing: A unified framework for model explanation. *Journal of Machine Learning Research* 22: 1–90.

Egede, L. E. (2007). Failure to Recognize Depression in Primary Care: Issues and Challenges. *Journal of General Internal Medicine* 22: 701–703, doi: 10.1007/s11606-007-0170-z.

References II

Falagas, M. E., Vardakas, K. Z. and Vergidis, P. I. (2007). Under-diagnosis of common chronic diseases: prevalence and impact on human health. *International Journal of Clinical Practice* 61: 1569–1579, doi: 10.1111/j.1742-1241.2007.01423.x.

Freeling, P., Rao, B. M., Paykel, E. S., Sireling, L. I. and Burton, R. H. (1985). Unrecognised depression in general practice. *Br Med J (Clin Res Ed)* 290: 1880–1883, doi: 10.1136/bmj.290.6485.1880.

Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. *Journal of Statistical Software* 33, doi: 10.18637/jss.v033.i01.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. *The Annals of Statistics* 29: 1189–1232, doi: 10.1214/aos/1013203451.

Hart, S. (1989). Shapley Value. In Eatwell, J., Milgate, M. and Newman, P. (eds), *Game Theory*, The New Palgrave. London: Palgrave Macmillan UK, 210–216, doi: 10.1007/978-1-349-20181-5__25.

Heskes, T., Sijben, E., Bucur, I. G. and Claassen, T. (2020). Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. and Lin, H. (eds), *Advances in Neural Information Processing Systems*, 33. Curran Associates, Inc., 4778–4789.

Higgins, E. S. (1994). A review of unrecognized mental illness in primary care. Prevalence, natural history, and efforts to change the course. *Archives of Family Medicine* 3: 908–917, doi: 10.1001/archfami.3.10.908.

References III

Hilton, M. F., Scuffham, P. A., Vecchio, N. and Whiteford, H. A. (2010). Using the interaction of mental health symptoms and treatment status to estimate lost employee productivity. *Australian and New Zealand Journal of Psychiatry* 44: 151–161, doi: 10.3109/00048670903393605.

Klinkman, M. S., Coyne, J. C., Gallo, S. and Schwenk, T. L. (1998). False Positives, False Negatives, and the Validity of the Diagnosis of Major Depression in Primary Care. *Archives of Family Medicine* 7: 451, doi: 10.1001/archfami.7.5.451.

Lim, D., Sanderson, K. and Andrews, G. (2000). Lost productivity among full-time workers with mental disorders. *The Journal of Mental Health Policy and Economics* 3: 139–146, doi: 10.1002/mhp.93.

Lundberg, S. M. and Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S. and Garnett, R. (eds), *Advances in Neural Information Processing Systems*, 30. Curran Associates, Inc.

McQuaid, J. R., Stein, M. B., Laffaye, C. and McCahill, M. E. (1999). Depression in a Primary Care Clinic: the Prevalence and Impact of an Unrecognized Disorder. *Journal of Affective Disorders* 55: 1–10, doi: 10.1016/S0165-0327(98)00191-8.

Mothilal, R. K., Sharma, A. and Tan, C. (2020). Explaining machine learning classifiers through diverse counterfactual explanations. In *Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency*, FAT* '20. New York, NY, USA: Association for Computing Machinery, 607–617, doi: 10.1145/3351095.3372850.

References IV

Ribeiro, M. T., Singh, S. and Guestrin, C. (2016). "Why Should I Trust You?": Explaining the Predictions of Any Classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '16. New York, NY, USA: Association for Computing Machinery, 1135–1144, doi: 10.1145/2939672.2939778.

Rost, K., Zhang, M., Fortney, J., Smith, J., Coyne, J. and Smith, G. R. (1998). Persistently poor outcomes of undetected major depression in primary care. *General Hospital Psychiatry* 20: 12–20, doi: 10.1016/s0163-8343(97)00095-9.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. *Journal of Computational and Applied Mathematics* 20: 53–65, doi: 10.1016/0377-0427(87)90125-7.

Shapley, L. S. (1951). Notes on the n-Person Game – II: The Value of an n-Person Game. Research Memorandum ATI 210720, RAND Corporation, Santa Monica, California.

Sheehan, D. V. (2004). Depression: underdiagnosed, undertreated, underappreciated. *Managed Care (Langhorne, Pa.)* 13: 6–8.

Simon, G. E., Barber, C., Birnbaum, H. G., Frank, R. G., Greenberg, P. E., Rose, R. M., Wang, P. S. and Kessler, R. C. (2001). Depression and Work Productivity: The Comparative Costs of Treatment Versus Nontreatment. *Journal of Occupational and Environmental Medicine* 43: 2, doi: 10.1097/00043764-200101000-00002.

Stewart, W. F., Ricci, J. A., Chee, E., Hahn, S. R. and Morganstein, D. (2003). Cost of Lost Productive Work Time Among US Workers With Depression. *JAMA* 289: 3135–3144, doi: 10.1001/jama.289.23.3135.

References V

Ware, J. E., Kosinski, M. and Dewey, J. E. (2001). *How to score version 2 of the SF-36 health survey: (standard & acute forms) ; [SF-36v2]*. Lincoln, RI: QualityMetric, 3rd ed.

Zhang, N. and Xu, H. (2023). Fairness of ratemaking for catastrophe insurance: Lessons from machine learning. *Information Systems Research* 35: 469–488, doi: 10.1287/isre.2022.1195.

B. MHI-5 Score

MHI-5 score

The MHI-5 score is calculated using the answers to 5 questions:

In the last 4 weeks, how often:

- 1 Did you feel very nervous?
- 2 Did you feel calm and relaxed?
- 3 Did you feel sad and downcast?
- 4 Have you felt happy?
- 5 You felt so discouraged that nothing could cheer you up?

In the **French version**, respondents can choose between the following answers, for each question:

- ▶ Always (1)
- ▶ Most of the time (2)
- ▶ Sometimes (3)
- ▶ Rarely (4)
- ▶ Never (5)

MHI-5 score

- ▶ Each answer by respondent $j = \{1, 2, \dots, N\}$ to question $i = \{1, 2, \dots, 5\}$ is transcribed using its numerical value.
- ▶ For the answers to the questions about feeling calm and happy, the scale is reversed.
- ▶ The MHI-5 score of individual j is then calculated as follows:

$$\text{MHI-5}_j = 100 \times \frac{\sum_{i=1}^5 A_{i,j} - \min\left(\sum_{j=1}^N \sum_{i=1}^5 A_{i,j}\right)}{\max\left(\sum_{j=1}^N \sum_{i=1}^5 A_{i,j}\right) - \min\left(\sum_{j=1}^N \sum_{i=1}^5 A_{i,j}\right)}$$

- ▶ The values, by construction, range between 0 and 100.
- ▶ The higher the score, the better the mental health.

◀ Go back

C. Estimation

Hyperparameters

Table 2: Hyperparameters.

Hyperparameter	Possible Values	Description
<i>Random Forest</i>		
<code>mtry</code>	{3, 4, 5, 6, 7, 8, 9 }	No. variables sampled as candidates at each split
<code>splitrule</code>	Gini index	Splitting rule
<code>min.node.size</code>	{50, 75, 100, 150}	Minimum size of terminal nodes
<i>Extreme Gradient Boosting</i>		
<code>nrounds</code>	500	No. boosting iterations
<code>max_depth</code>	{3, 4, 5 , 6}	Maximum depth of a tree
<code>colsample_bytree</code>	{.1, .2, ..., .8 , .9}	Subsample ratio of col. when building each tree
<code>eta</code>	0.01	Learning rate
<code>gamma</code>	{0, 5 , 10}	Min loss reduction for further partition on a leaf node
<code>min_child_weight</code>	{50, 100, 150 }	Min sum of instance weight needed in a child
<code>subsample</code>	{0.7, 0.8, 0.9 , 1}	Subsample ratio of the training instances
<i>Penalised Logistic Regression Model.</i>		
<code>alpha</code>	Sequence of equally distant values from 0.1 to 1 with a length of 100	Elasticnet mixing parameter

Clustering (1/3)

► **Input for clustering :**

- Use **SHAP values** as individual-level explanations,
- For each variable, compute the **mean SHAP value** across individuals,
- Compute the **overall mean** of these variable-wise averages,
- Retain only variables whose **mean SHAP value** is **above the overall mean**.

► **Hierarchical clustering :**

- Perform **hierarchical clustering** on the **selected SHAP values**,
- Use **Euclidean distance** on **SHAP vectors** as the dissimilarity measure.

► **Choosing the number of clusters K :**

- For each $K = 2, \dots, 15$: run clustering and compute the **silhouette score** ([Rousseeuw, 1987](#)),
- Select the K that **maximises** the average silhouette score.

Clustering (2/3)

Table 3: Average Person in Each Cluster and in the Samples.

	Cluster 1 <i>n</i> = 626	Cluster 2 <i>n</i> = 1,077	Cluster 3 <i>n</i> = 566	Pred. Imaginary <i>n</i> = 2,269	Pred. Healthy <i>n</i> = 3,024	Entire Sample <i>n</i> = 5,293
<i>Imaginary healthy</i>	306(48.9%)	517(48.0%)	248(43.8%)	1071(47.2%)	526(17.4%)	1597(30.2%)
Accuracy	48.9%	48.0%	43.8%	47.2%	82.6%	67.4%
Net Income per Cons. Unit	1193.67 (687.48)	1640.95 (691.14)	643.45 (192.42)	1268.72 (728.7)	1865.21 (1108.24)	1609.51 (1008.13)
Reimbursement GP	228.85 (169.81)	131.15 (119.72)	85.79 (108.71)	146.79 (143.51)	46.41 (48.95)	89.44 (112.53)
Age	66.15 (15.23)	49.29 (16.48)	38.39 (12.82)	51.22 (18.39)	46.8 (18.49)	48.7 (18.58)
Low Back Pain	No (81.6%)	No (50.3%)	No (75.6%)	No (65.3%)	No (90.4%)	No (79.6%)
Reimbursement Pharmacy	1794.9 (3321.96)	306.26 (669.55)	99.92 (178.35)	665.5 (1937.75)	133.41 (805.81)	361.5 (1431.61)
Neck Pain	No (88%)	No (57.9%)	No (86.9%)	No (73.5%)	No (94.3%)	No (85.4%)
Freq. Meet. w/ People in Org.	Never (64.2%)	Never (59.4%)	Never (66.8%)	Never (62.6%)	Never (42.9%)	Never (51.3%)
Gender	Female (51%)	Female (71.7%)	Female (62.9%)	Female (63.8%)	Male (56.4%)	Female (52.2%)
Have to Hurry to Do Job	No answer (85.8%)	No answer (37.5%)	No answer (71.6%)	No answer (59.3%)	No answer (46.2%)	No answer (51.8%)
Very Little Freedom to Do Job	No answer (85.9%)	No answer (37.8%)	No answer (72.1%)	No answer (59.6%)	No answer (46.4%)	No answer (52.1%)
Allergy	No (86.7%)	No (69.5%)	No (83.9%)	No (77.8%)	No (91.1%)	No (85.4%)
Waiver GP	No (81%)	No (85.1%)	No (64%)	No (78.7%)	No (74%)	No (76%)
Long-term condition (Self-declared)	Yes (74.1%)	No (79.4%)	No (89.9%)	No (67.2%)	No (90.5%)	No (80.5%)

Notes: This table shows the representative person in each of the three clusters in the set of individuals predicted as *imaginary healthy*, in the set of individuals predicted as healthy, and in the entire sample. For numerical variables, the within-cluster means are reported (with standard errors between brackets), whereas for categorical variables, the within-cluster mode is provided (the proportions are given in brackets). The first rows of the table give the number of *imaginary healthy* and the corresponding proportion in each sample, and the accuracy of the XBG model in that sample. GP stands for general practitioners.

◀ Go back

Clustering (3/3)

Figure 5: Step-by-step example of the hierarchical clustering algorithm.

◀ Go back