#### The Dynamic Effects of Weather Shocks on Agricultural Production

C. Crofils<sup>1</sup> E. Gallic<sup>2</sup> G. Vermandel<sup>1,3</sup>

<sup>1</sup>Université Paris Dauphine PSL

<sup>2</sup>Aix-Marseille School of Economics. Aix-Marseille Univ.

<sup>3</sup>École Polytechnique





63e congrès annuel de la SCSE, 17/05/2024

The Dynamic Effects of Weather Shocks on Agricultural Production

1. Introduction

■ Increased frequency, and intensity of extreme weather events, and expected to increase in the near term: **Physical risk**.

- Increased frequency, and intensity of extreme weather events, and expected to increase in the near term: **Physical risk**.
- Particularly harmful for developing countries.

- Increased frequency, and intensity of extreme weather events, and expected to increase in the near term: **Physical risk**.
- Particularly harmful for developing countries.
- Quantitatively assessing physical risk is important as temperature continues to increase.

- Increased frequency, and intensity of extreme weather events, and expected to increase in the near term: **Physical risk**.
- Particularly harmful for developing countries.
- Quantitatively assessing physical risk is important as temperature continues to increase.
- Anticipating the cost of physical risk important to implement adaptation policies.

In practice: hard to bridge weather and agricultural data:

Temporal delay: growing process of crops naturally creates a time lag between weather shock realization and its economic accounting at harvesting time.

In practice: hard to bridge weather and agricultural data:

- Temporal delay: growing process of crops naturally creates a time lag between weather shock realization and its economic accounting at harvesting time.
- Temporal aggregation of weather data: annual weather data underestimate physical risk as extreme positive and negative weather events average out throughout the year (Colacito, Hoffmann, and Phan (2019)).

In practice: hard to bridge weather and agricultural data:

- Temporal delay: growing process of crops naturally creates a time lag between weather shock realization and its economic accounting at harvesting time.
- Temporal aggregation of weather data: annual weather data underestimate physical risk as extreme positive and negative weather events average out throughout the year (Colacito, Hoffmann, and Phan (2019)).
- 3 Heterogenous effects across seasons, crops, and space: effects of the weather different during growing season (vs. harvesting), or per type of crops (eg., maize vs. rice).

■ The literature that measures the economic implications of wheather shocks is typically subject to these caveats (Dell, Jones, and Olken (2012)).

- The literature that measures the economic implications of wheather shocks is typically subject to these caveats (Dell, Jones, and Olken (2012)).
- Usual quantitative assessments rely on annual data (Jagnani et al. 2020; DAgostino and Schlenker 2016; Burke and Emerick 2016; Deschênes and Greenstone 2007).

- The literature that measures the economic implications of wheather shocks is typically subject to these caveats (Dell, Jones, and Olken (2012)).
- Usual quantitative assessments rely on annual data (Jagnani et al. 2020; DAgostino and Schlenker 2016; Burke and Emerick 2016; Deschênes and Greenstone 2007).
- This leads to underestimated risks (Cui et al. (2024)): possibly large implications for misanticipating future food shortages.

■ Methodological contribution: making our quantitative exploration more robust to those caveats.

- Methodological contribution: making our quantitative exploration more robust to those caveats.
- How? Four main ingredients:

- Methodological contribution: making our quantitative exploration more robust to those caveats.
- How? Four main ingredients:
- High frequency data: maps infra-annual variations in production with weather (caveat #1) & distinguish harvesting vs growing seasons (caveats #2 and #3).

- Methodological contribution: making our quantitative exploration more robust to those caveats.
- How? Four main ingredients:
- High frequency data: maps infra-annual variations in production with weather (caveat #1) & distinguish harvesting vs growing seasons (caveats #2 and #3).
- Local projections: capture propagation of weather along the crop growing process (caveat #1) & flexible for heterogenous effects (caveat #3).

- Methodological contribution: making our quantitative exploration more robust to those caveats.
- How? Four main ingredients:
- High frequency data: maps infra-annual variations in production with weather (caveat #1) & distinguish harvesting vs growing seasons (caveats #2 and #3).
- Local projections: capture propagation of weather along the crop growing process (caveat #1) & flexible for heterogenous effects (caveat #3).
- Data at regional & crop level: disaggregation captures heterogenous effects (caveat #3).

- Methodological contribution: making our quantitative exploration more robust to those caveats.
- How? Four main ingredients:
- High frequency data: maps infra-annual variations in production with weather (caveat #1) & distinguish harvesting vs growing seasons (caveats #2 and #3).
- **Local projections**: capture propagation of weather along the crop growing process (caveat #1) & flexible for heterogenous effects (caveat #3).
- Data at regional & crop level: disaggregation captures heterogenous effects (caveat #3).
- No temporal aggregation of weather data: only monthly extremes considered (caveat #2).

■ Objective: Measure quantitatively the dynamic effects of abnormal weather realizations on agricultural production in a developing country.

- Objective: Measure quantitatively the dynamic effects of abnormal weather realizations on agricultural production in a developing country.
- How?

- Objective: Measure quantitatively the dynamic effects of abnormal weather realizations on agricultural production in a developing country.
- How?
  - Peruvian data per crop, region and month.

- Objective: Measure quantitatively the dynamic effects of abnormal weather realizations on agricultural production in a developing country.
- How?
  - Peruvian data per crop, region and month.
  - Compute impulse response function of agricultural products to a weather shock.

- Objective: Measure quantitatively the dynamic effects of abnormal weather realizations on agricultural production in a developing country.
- How?
  - Peruvian data per crop, region and month.
  - Compute impulse response function of agricultural products to a weather shock.
  - Contrast for time and season.

- Objective: Measure quantitatively the dynamic effects of abnormal weather realizations on agricultural production in a developing country.
- How?
  - Peruvian data per crop, region and month.
  - Compute impulse response function of agricultural products to a weather shock.
  - Contrast for time and season.
  - A micro to macro analysis.

■ An adverse weather shock always leads to a negative downturn in agricultural production:

- An adverse weather shock always leads to a negative downturn in agricultural production:
  - up to 15% monthly decline in agricultural production (persistent)

- An adverse weather shock always leads to a negative downturn in agricultural production:
  - up to 15% monthly decline in agricultural production (persistent)
- 2 Crop growth timing matters: shocks occurring during the growing season have a greater impact than during the harvest season.

- An adverse weather shock always leads to a negative downturn in agricultural production:
  - up to 15% monthly decline in agricultural production (persistent)
- 2 Crop growth timing matters: shocks occurring during the growing season have a greater impact than during the harvest season.
- 3 At the aggregate level: a representative weather shock results in

- An adverse weather shock always leads to a negative downturn in agricultural production:
  - up to 15% monthly decline in agricultural production (persistent)
- Crop growth timing matters: shocks occurring during the growing season have a greater impact than during the harvest season.
- 3 At the aggregate level: a representative weather shock results in
  - a 0.5% decline in agricultural GDP

- An adverse weather shock always leads to a negative downturn in agricultural production:
  - up to 15% monthly decline in agricultural production (persistent)
- 2 Crop growth timing matters: shocks occurring during the growing season have a greater impact than during the harvest season.
- 3 At the aggregate level: a representative weather shock results in
  - a 0.5% decline in agricultural GDP
  - a 1.5% decline in exports

- An adverse weather shock always leads to a negative downturn in agricultural production:
  - up to 15% monthly decline in agricultural production (persistent)
- Crop growth timing matters: shocks occurring during the growing season have a greater impact than during the harvest season.
- 3 At the aggregate level: a representative weather shock results in
  - a 0.5% decline in agricultural GDP
  - a 1.5% decline in exports
  - a modest reduction in inflation.

2. Data

■ Rice, Maize, Potatoes, Cassava

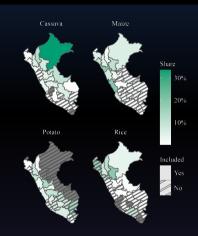


Figure 1: Regional distribution of crop production by administrative regions

- Rice, Maize, Potatoes, Cassava
  - 37% of total production

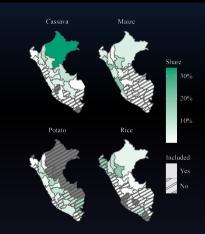


Figure 1: Regional distribution of crop production by administrative regions

- Rice, Maize, Potatoes, Cassava
  - 37% of total production
  - 53% of cultivated surface.

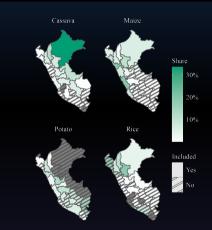


Figure 1: Regional distribution of crop production by administrative regions

- Rice, Maize, Potatoes, Cassava
  - 37% of total production
  - 53% of cultivated surface.
- Monthly statistical reports (El Agro En Cifras, MINAGRI).

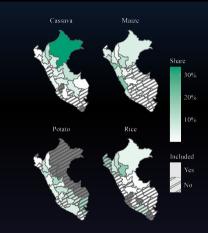


Figure 1: Regional distribution of crop production by administrative regions

### Agricultural Data

- Rice, Maize, Potatoes, Cassava
  - 37% of total production
  - 53% of cultivated surface.
- Monthly statistical reports (El Agro En Cifras, MINAGRI).
- 25 administrative regions.

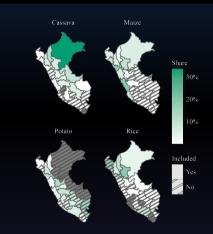


Figure 1: Regional distribution of crop production by administrative regions

### Agricultural Data

- Rice, Maize, Potatoes, Cassava
  - 37% of total production
  - 53% of cultivated surface.
- Monthly statistical reports (El Agro En Cifras, MINAGRI).
- 25 administrative regions.
- 2001-01 to 2015-12 (180 months).

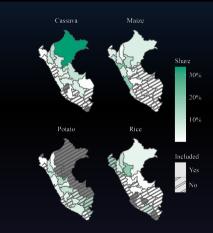


Figure 1: Regional distribution of crop production by administrative regions

### Agricultural Data

- Rice, Maize, Potatoes, Cassava
  - 37% of total production
  - 53% of cultivated surface.
- Monthly statistical reports (El Agro En Cifras, MINAGRI).
- 25 administrative regions.
- **2001-01** to 2015-12 (180 months).
- Percentage deviation from monthly average (details).

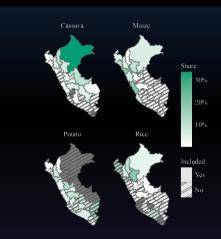


Figure 1: Regional distribution of crop production by administrative regions

■ Six macroeconomic series:

- Six macroeconomic series:
  - National GDP

- Six macroeconomic series:
  - National GDP
  - National CPI

- Six macroeconomic series:
  - National GDP
  - National CPI
  - Food Consumer Price Index

- Six macroeconomic series:
  - National GDP
  - National CPI
  - Food Consumer Price Index
  - Sol/US Exchange rate

#### ■ Six macroeconomic series:

- National GDP
- National CPI
- Food Consumer Price Index
- Sol/US Exchange rate
- National interest rate

#### ■ Six macroeconomic series:

- National GDP
- National CPI
- Food Consumer Price Index
- Sol/US Exchange rate
- National interest rate
- Exports.

- Six macroeconomic series:
  - National GDP
  - National CPI
  - Food Consumer Price Index
  - Sol/US Exchange rate
  - National interest rate
  - Exports.
- Banco Central de Reserva del Peru.

- Six macroeconomic series:
  - National GDP
  - National CPI
  - Food Consumer Price Index
  - Sol/US Exchange rate
  - National interest rate
  - Exports.
- Banco Central de Reserva del Peru.
- National level.

- Six macroeconomic series:
  - National GDP
  - National CPI
  - Food Consumer Price Index
  - Sol/US Exchange rate
  - National interest rate
  - Exports.
- Banco Central de Reserva del Peru.
- National level.
- Monthly data.

Daily surface temperature



Figure 2: Example of a grid over Peru

- Daily surface temperature
  - PISCOt V1.1 (grid, 0.1°x0.1°)



Figure 2: Example of a grid over Peru

- Daily surface temperature
  - PISCOt V1.1 (grid, 0.1°×0.1°)
  - **1981** 2015.



Figure 2: Example of a grid over Peru

- Daily surface temperature
  - PISCOt V1.1 (grid, 0.1°×0.1°)
  - **1981** 2015.
- Daily rainfall



Figure 2: Example of a grid over Peru

- Daily surface temperature
  - PISCOt V1.1 (grid, 0.1°×0.1°)
  - **1981** 2015.
- Daily rainfall
  - CHIRPS v2.0 (grid, 0.05°x0.05°)



Figure 2: Example of a grid over Peru

- Daily surface temperature
  - PISCOt V1.1 (grid, 0.1°×0.1°)
  - **1981** 2015.
- Daily rainfall
  - CHIRPS v2.0 (grid, 0.05°x0.05°)
  - 1981 2015.



Figure 2: Example of a grid over Peru

- Daily surface temperature
  - PISCOt V1.1 (grid, 0.1°×0.1°)
  - **1981** 2015.
- Daily rainfall
  - CHIRPS v2.0 (grid, 0.05°x0.05°)
  - 1981 2015.
- ENSO Oscillations



Figure 2: Example of a grid over Peru

- Daily surface temperature
  - PISCOt V1.1 (grid, 0.1°×0.1°)
  - **1981 2015.**
- Daily rainfall
  - CHIRPS v2.0 (grid, 0.05°x0.05°)
  - 1981 2015.
- ENSO Oscillations
  - Golden Gate Weather Service (worldwide)



Figure 2: Example of a grid over Peru

- Daily surface temperature
  - PISCOt V1.1 (grid, 0.1°×0.1°)
  - **1981** 2015.
- Daily rainfall
  - CHIRPS v2.0 (grid, 0.05°x0.05°)
  - 1981 2015.
- ENSO Oscillations
  - Golden Gate Weather Service (worldwide)
  - **2000** 2015.



Figure 2: Example of a grid over Peru

Step 1: Weather at the Monthly Grid Level

#### Step 1: Weather at the Monthly Grid Level

For grid cell  $\ell$  and for a specific month m in year y, we compute:

Average maximum temperature:

Total rainfall:

$$\mathcal{T}_{\ell,y,m} = rac{1}{N_{dm}} \sum_{d=1}^{N_{dm}} \mathcal{T}_{\ell,y,m,d}$$

$$\mathcal{P}_{c,y,m} = \sum_{d=1}^{N_{dm}} \mathcal{P}_{c,y,m,d}$$

where  $N_{dm}$  is the number of days in month m.

Step 2: Define Weather Shock

For  $\mathcal{W}_{c,y,m}$  (temperatures and precipitations):

Step 2: Define Weather Shock

For  $\mathcal{W}_{c,y,m}$  (temperatures and precipitations):

A. Climate Normals

For each month m: average monthly values over the 30-year period from 1986 to 2015:

$$\overline{\mathcal{W}}_{\ell, \bullet, m} = \frac{1}{y_T - y_0 + 1} \sum_{y = y_0}^{y_T} \mathcal{W}_{\ell, y, m}.$$

Step 2: Define Weather Shock

For  $W_{c,u,m}$  (temperatures and precipitations):

A. Climate Normals

For each month m: average monthly values over the 30-year period from 1986 to 2015:

$$\overline{\mathcal{W}}_{\ell, \bullet, m} = \frac{1}{y_T - y_0 + 1} \sum_{y = y_0}^{y_T} \mathcal{W}_{\ell, y, m}.$$

B. Deviations from Normals

We compute the deviations from the monthly climate normals:

$$W_{\ell,m,y} = \mathcal{W}_{\ell,y,m} - \overline{\mathcal{W}}_{\ell,ullet,m}.$$

#### Step 3: Regional Aggregation

From the monthly grid-level weather data, we compute monthly regional aggregates at date t (year y and month m) using a weighted mean:

$$\boldsymbol{W}_{i,t} = \frac{\sum_{c \in \mathcal{R}_i} \omega_c^{\text{area}} \omega_c^{\text{cropland}} \textcolor{red}{\boldsymbol{W}_{c,t}}}{\sum_{c \in \mathcal{R}_i} \omega_c^{\text{area}} \omega_c^{\text{cropland}}},$$

#### Step 3: Regional Aggregation

From the monthly grid-level weather data, we compute monthly regional aggregates at date t (year y and month m) using a weighted mean:

$$\boldsymbol{W}_{i,t} = \frac{\sum_{c \in \mathcal{R}_i} \omega_c^{\mathsf{area}} \omega_c^{\mathsf{cropland}} \frac{\boldsymbol{W}}{\boldsymbol{W}_{c,t}}}{\sum_{c \in \mathcal{R}_i} \omega_c^{\mathsf{area}} \omega_c^{\mathsf{cropland}}},$$

 $\omega_c^{\mathrm{area}}$ : proportion of the cell to the total surface area of the region

 $\omega_c^{ ext{cropland}}$ : proportion that the cell represents in the agricultural production of the region.

Objective: measure the effects of weather shocks on agricultural production.

■ Agricultural production (4 crops):

Objective: measure the effects of weather shocks on agricultural production.

■ Agricultural production (4 crops):

at the regional scale

Objective: measure the effects of weather shocks on agricultural production.

- Agricultural production (4 crops):
  - at the regional scale
  - on a monthly basis, from 2001-01 to 2015-12 (180 months).

Objective: measure the effects of weather shocks on agricultural production.

- Agricultural production (4 crops):
  - at the regional scale
  - on a monthly basis, from 2001-01 to 2015-12 (180 months).
- Macroeconomic data national level, same period (control variables).

Objective: measure the effects of weather shocks on agricultural production.

- Agricultural production (4 crops):
  - at the regional scale
  - on a monthly basis, from 2001-01 to 2015-12 (180 months).
- Macroeconomic data national level, same period (control variables).
- 3 Weather data: temperature anomalies and precipitation anomalies (deviation from historical monthly average), same period, aggregated at the regional scale.

3. Empirical Analysis

## Local Projections

How sensitive agricultural output is to exogenous changes in the weather?

### Local Projections

How sensitive agricultural output is to exogenous changes in the weather?

Model of Local Projections (Jordà 2005), in a panel dimension (Acevedo et al. 2020) (region  $\times$  time), estimated independently for each crop:

$$\underbrace{y_{c,i,t+h}}_{\text{Production}} = \underbrace{\alpha_{c,i,h}}_{\text{Reg. fixed effect}} + \underbrace{\beta_{c,h}^T T_{i,t} + \beta_{c,h}^P P_{i,t}}_{\text{Controls}} + \varepsilon_{c,i,t+h} \tag{1}$$

We are interested in the estimated coefficients associated with temperature and precipitation shocks for various time horizons  $h = \{0, 1, ..., T_c\}$  with  $T_c$  the IRF time length (or the crop's natural time of growth from planting to harvesting ~6 to 8 months).

### Local Projections

$$\begin{split} y_{c,i,t+0} &= \alpha_{c,i,0} + \beta_{c,0}^T T_{i,t} + \beta_{c,0}^P P_{i,t} + \delta_{c,i,0} X_t + \varepsilon_{c,i,t+0} \\ y_{c,i,t+1} &= \alpha_{c,i,1} + \beta_{c,1}^T T_{i,t} + \beta_{c,1}^P P_{i,t} + \delta_{c,i,1} X_t + \varepsilon_{c,i,t+1} \\ y_{c,i,t+2} &= \alpha_{c,i,2} + \beta_{c,2}^T T_{i,t} + \beta_{c,2}^P P_{i,t} + \delta_{c,i,2} X_t + \varepsilon_{c,i,t+2} \\ & \cdots \\ y_{c,i,t+H} &= \alpha_{c,i,H} + \beta_{c,H}^T T_{i,t} + \beta_{c,H}^P P_{i,t} + \delta_{c,i,H} X_t + \varepsilon_{c,i,t+H} \end{split}$$

■ We are interested in the coefficients:

$$\{\beta_{c,0}^T, \beta_{c,1}^T, \beta_{c,2}^T, \dots \beta_{c,H}^T\} \text{ and } \{\beta_{c,0}^P, \beta_{c,1}^P, \beta_{c,2}^P, \dots \beta_{c,H}^P\}$$

## Linear Response

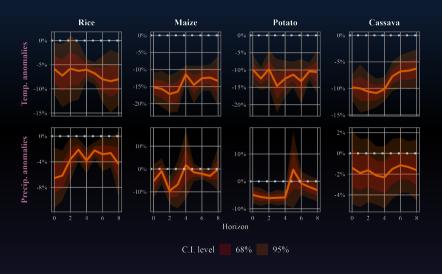


Figure 3: Agricultural production response to a weather shock

■ The literature typically contrast the effects of weather shocks to **growing** versus harvesting season.

- The literature typically contrast the effects of weather shocks to **growing** versus harvesting season.
- Crops may be more sensitive to the weather at the beginning of their growing process.

- The literature typically contrast the effects of weather shocks to **growing** versus harvesting season.
- Crops may be more sensitive to the weather at the beginning of their growing process.

- The literature typically contrast the effects of weather shocks to **growing** versus harvesting season.
- Crops may be more sensitive to the weather at the beginning of their growing process.

How do time-dependency of weather shocks shape propagation patterns?

Similarly to Auerbach and Gorodnichenko (2011), we accomodate the LP framework for time-dependency.

$$\begin{split} y_{c,i,t+h} = & \Phi\left(\hat{z}_{c,i,t}\right) \left[\alpha_{c,i,h}^G + \beta_{c,h}^{G,T} T_{i,t} + \beta_{c,h}^{G,P} P_{i,t} + \delta_{c,i,h}^G X_t\right] \\ & + \left(1 - \Phi\left(\hat{z}_{c,i,t}\right)\right) \left[\alpha_{c,i,h}^H + \beta_{c,h}^{H,T} T_{i,t} + \beta_{c,h}^{H,P} P_{i,t} + \delta_{c,i,h}^H X_t\right] \\ & + \varepsilon_{c,i,t+h} \end{split}$$

■ Two states: Growing season and Harvesting season

Similarly to Auerbach and Gorodnichenko (2011), we accomodate the LP framework for time-dependency.

$$\begin{split} y_{c,i,t+h} = & \Phi\left(\hat{z}_{c,i,t}\right) \left[\alpha_{c,i,h}^G + \beta_{c,h}^{G,T} T_{i,t} + \beta_{c,h}^{G,P} P_{i,t} + \delta_{c,i,h}^G X_t\right] \\ & + \left(1 - \Phi\left(\hat{z}_{c,i,t}\right)\right) \left[\alpha_{c,i,h}^H + \beta_{c,h}^{H,T} T_{i,t} + \beta_{c,h}^{H,P} P_{i,t} + \delta_{c,i,h}^H X_t\right] \\ & + \varepsilon_{c,i,t+h} \end{split}$$

- Two states: Growing season and Harvesting season
- Transition function: CDF of the standard normal distribution.

Similarly to Auerbach and Gorodnichenko (2011), we accomodate the LP framework for time-dependency.

$$\begin{split} y_{c,i,t+h} = & \Phi\left(\hat{z}_{c,i,t}\right) \left[\alpha_{c,i,h}^G + \beta_{c,h}^{G,T} T_{i,t} + \beta_{c,h}^{G,P} P_{i,t} + \delta_{c,i,h}^G X_t\right] \\ & + \left(1 - \Phi\left(\hat{z}_{c,i,t}\right)\right) \left[\alpha_{c,i,h}^H + \beta_{c,h}^{H,T} T_{i,t} + \beta_{c,h}^{H,P} P_{i,t} + \delta_{c,i,h}^H X_t\right] \\ & + \varepsilon_{c,i,t+h} \end{split}$$

- Two states: Growing season and Harvesting season
- Transition function: CDF of the standard normal distribution.
- When  $\hat{z}_{c,i,t}$  high -> surface is planted ->  $\Phi\left(\hat{z}_{c,i,t}\right)$  close to one -> informative of  $\beta_{c,h}^{G,T}T_{i,t}$  and  $\beta_{c,h}^{G,P}P_{i,t}$ .

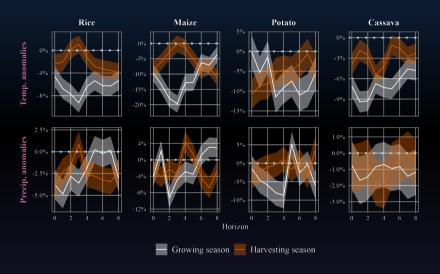


Figure 4: Agricultural prod. response to a weather shock contrasting for growing vs. harvesting season

### Aggregate Fluctuations (1/3)

Do weather shocks also matter at an aggregate level?

### Aggregate Fluctuations (1/3)

Do weather shocks also matter at an aggregate level?

We measure the macroeconomic effects of the weather through the **weather-implied losses** measured by our baseline local projections.

### Aggregate Fluctuations (1/3)

Do weather shocks also matter at an aggregate level?

We measure the macroeconomic effects of the weather through the **weather-implied losses** measured by our baseline local projections.

We compute national weather-adjusted agricultural production:

$$y_t^{\omega} = \frac{1}{\sum_c \omega_{c,t}} \sum_c \sum_h \sum_i \frac{1_{\mathsf{signif}_{c,i,t,h}} \times \left(\beta_{c,h}^T T_{i,t-h} + \beta_{c,h}^P P_{i,t-h}\right) \times \omega_{c,t}}{\mathsf{card}(I_{c,t})}, \quad \text{(2)}$$

where  $\omega_{c,t} = \sum_i y_{c,t,i}^{\text{raw}} \times p_c$  is a quantity weight for crop c at time t, with  $p_c$  the average selling price of crop c.

### Aggregate Fluctuations (2/3)

The agricultural production is then expressed as the deviation (loss) from the expected trend: the 'weather component of agricultural losses'

$$WCAL_t = -100 \times (y_t^{\omega} - \overline{y_t^{\omega}}).$$
 (3)

### Aggregate Fluctuations (2/3)

The agricultural production is then expressed as the deviation (loss) from the expected trend: the 'weather component of agricultural losses'

$$WCAL_t = -100 \times (y_t^{\omega} - \overline{y_t^{\omega}}).$$
 (3)

A Structural vector auto-regressive (SVAR) model with Choleski decomposition is a straightforward way to quantitatively assess dynamic interactions across time series:

$$Y_t = \phi_0 + \sum_{i=1}^p \phi_i Y_{t-i} + \varepsilon_t \tag{4}$$

with 
$$Y_t = \begin{bmatrix} WCAL_t, RER_t, \pi_t^A, \pi_t, X_t, y_t^A, r_t, y_t \end{bmatrix}$$
.

# Aggregate Fluctuations (3/3)

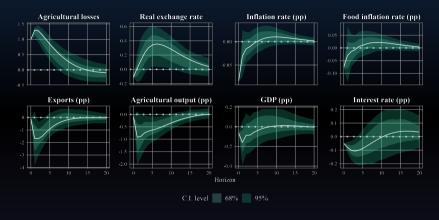


Figure 5: VAR(2) system response to one standard deviation orthogonal shock to the weather aggregate cost equation

4. Conclusion

Objective: analyze the propagation mechanism of a weather shock on agricultural production at a monthly frequency, for various crops, in heterogeneous geographical and seasonal patterns.

Adverse weather shock: leads to a negative downturn in agricultural prod.:

- Adverse weather shock: leads to a negative downturn in agricultural prod.:
  - up to 15% monthly decline in agricultural production (persistent)

- Adverse weather shock: leads to a negative downturn in agricultural prod.:
  - up to 15% monthly decline in agricultural production (persistent)
- 2 Crop growth timing matters: shocks occurring during the growing season have a greater impact than during the harvest season.

- Adverse weather shock: leads to a negative downturn in agricultural prod.:
  - up to 15% monthly decline in agricultural production (persistent)
- 2 Crop growth timing matters: shocks occurring during the growing season have a greater impact than during the harvest season.
- 3 At the aggregate level: a representative weather shock results in

- Adverse weather shock: leads to a negative downturn in agricultural prod.:
  - up to 15% monthly decline in agricultural production (persistent)
- Crop growth timing matters: shocks occurring during the growing season have a greater impact than during the harvest season.
- 3 At the aggregate level: a representative weather shock results in
  - 0.5% decline in ag. GDP; 1.5% decline in exports; modest reduction in inflation.

- Adverse weather shock: leads to a negative downturn in agricultural prod.:
  - up to 15% monthly decline in agricultural production (persistent)
- Crop growth timing matters: shocks occurring during the growing season have a greater impact than during the harvest season.
- 3 At the aggregate level: a representative weather shock results in
  - 0.5% decline in ag. GDP; 1.5% decline in exports; modest reduction in inflation.

Objective: analyze the propagation mechanism of a weather shock on agricultural production at a monthly frequency, for various crops, in heterogeneous geographical and seasonal patterns.

- Adverse weather shock: leads to a negative downturn in agricultural prod.:
  - up to 15% monthly decline in agricultural production (persistent)
- Crop growth timing matters: shocks occurring during the growing season have a greater impact than during the harvest season.
- 3 At the aggregate level: a representative weather shock results in
  - 0.5% decline in ag. GDP; 1.5% decline in exports; modest reduction in inflation.

Comments are welcome: ewen.gallic@univ-amu.fr

#### References I

- Acevedo, Sebastian, Mico Mrkaic, Natalija Novta, Evgenia Pugacheva, and Petia Topalova. 2020. "The Effects of Weather Shocks on Economic Activity: What Are the Channels of Impact?" *Journal of Macroeconomics* 65: 103207.
- Auerbach, Alan, and Yuriy Gorodnichenko. 2011. "Fiscal Multipliers in Recession and Expansion." National Bureau of Economic Research. https://doi.org/10.3386/w17447.
- Burke, Marshall, and Kyle Emerick. 2016. "Adaptation to Climate Change: Evidence from US Agriculture." *American Economic Journal: Economic Policy* 8 (3): 106–40. https://doi.org/10.1257/pol.20130025.

#### References II

- Colacito, Riccardo, Bridget Hoffmann, and Toan Phan. 2019. "Temperature and Growth: A Panel Analysis of the United States." *Journal of Money, Credit and Banking* 51 (2-3): 313–68.
- Cui, Xiaomeng, Bulat Gafarov, Dalia Ghanem, and Todd Kuffner. 2024. "On Model Selection Criteria for Climate Change Impact Studies." *Journal of Econometrics* 239 (1): 105511. https://doi.org/https://doi.org/10.1016/j.jeconom.2023.105511.
- DAgostino, Anthony Louis, and Wolfram Schlenker. 2016. "Recent Weather Fluctuations and Agricultural Yields: Implications for Climate Change." Agricultural Economics 47 (S1): 159–71. https://doi.org/10.1111/agec.12315.
- Dell, Melissa, Benjamin F Jones, and Benjamin A Olken. 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century." *American Economic Journal: Macroeconomics* 4 (3): 66–95. https://doi.org/10.1257/mac.4.3.66.

#### References III

Deschênes, Olivier, and Michael Greenstone. 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather." American Economic Review 97 (1): 354–85. https://doi.org/10.1257/aer.97.1.354.

Jagnani, Maulik, Christopher B Barrett, Yanyan Liu, and Liangzhi You. 2020. "Within-Season Producer Response to Warmer Temperatures: Defensive Investments by Kenyan Farmers." *The Economic Journal* 131 (633): 392–419. https://doi.org/10.1093/ej/ueaa063.

Jordà, Òscar. 2005. "Estimation and Inference of Impulse Responses by Local Projections." *American Economic Review* 95 (1): 161–82. https://doi.org/10.1257/0002828053828518.

# Appendix

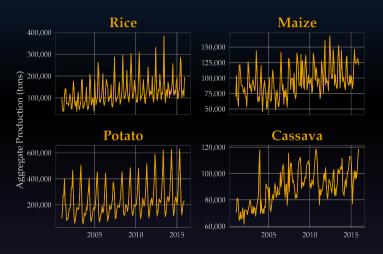


Table 1: Monthly production (in tons) per type of crop

|         |        |        |          |      |         | #       |       |
|---------|--------|--------|----------|------|---------|---------|-------|
| Culture | Mean   | Median | Std Dev. | Min. | Max.    | Regions | # Obs |
| Cassava | 6,004  | 3,878  | 7,792    | 0    | 16,080  | 15      | 2,631 |
| Maize   | 7,170  | 4,336  | 8,490    | 0    | 2,705   | 13      | 2,271 |
| Potato  | 17,252 | 5,801  | 30,155   | 6    | 360,070 | 12      | 2,091 |
| Rice    | 13,128 | 4,441  | 16,213   | 3.9  | 8,863   | 7       | 1,212 |

■ We do not use yields: for some months, the surface is zero

- We do not use yields: for some months, the surface is zero
- Instead: percentage deviation from monthly average, in four steps

- We do not use yields: for some months, the surface is zero
- Instead: percentage deviation from monthly average, in four steps
- Demeaned data:

$$y_{c,i,m,t}^{\text{demeaned}} = \frac{y_{c,i,m,t}^{\text{raw}}}{n_T \sum_{t=1}^{T} y_{c,i,m}^{raw}}$$
 (5)

- We do not use yields: for some months, the surface is zero
- Instead: percentage deviation from monthly average, in four steps
- Demeaned data:

$$y_{c,i,m,t}^{\text{demeaned}} = \frac{y_{c,i,m,t}^{\text{raw}}}{n_T \sum_{t=1}^{T} y_{c,i,m}^{\text{raw}}}$$
 (5)

**Estimate production** with OLS, with a quadratic trend for crop c, in region i, in month m, by OLS:

$$y_{c,i,m}^{\text{demeaned}} = \beta_{c,i,m} t + \gamma_{c,i,m} t^2 + \varepsilon_{c,i,m}$$
(6)

- We do not use yields: for some months, the surface is zero
- Instead: percentage deviation from monthly average, in four steps
- Demeaned data:

$$y_{c,i,m,t}^{\text{demeaned}} = \frac{y_{c,i,m,t}^{\text{raw}}}{n_T \sum_{t=1}^{T} y_{c,i,m}^{\text{raw}}}$$
 (5)

**Estimate production** with OLS, with a quadratic trend for crop c, in region i, in month m, by OLS:

$$y_{c,i,m}^{\text{demeaned}} = \beta_{c,i,m} t + \gamma_{c,i,m} t^2 + \varepsilon_{c,i,m}$$
(6)

Oefine detrended value:

$$y_{c,i,m} = y_{c,i,m}^{demeaned} - (\hat{\beta}_{c,i,m}t + \hat{\gamma}_{c,i,m}t^2)$$
(7)

## Agricultural Data (4/4)

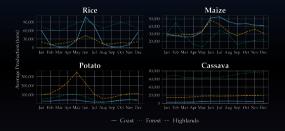


Figure 7: Crop production by months and natural regions (in tons)

#### Agricultural Share of each Cell within a Region



Figure 8: Regional agricultural area for each cell

■ The agricultural sector is modeled using a Cobb-Douglas production function

- The agricultural sector is modeled using a Cobb-Douglas production function
- The production model captures the relationship between agricultural output, labor demand, and harvested area.

- The agricultural sector is modeled using a Cobb-Douglas production function
- The production model captures the relationship between agricultural output, labor demand, and harvested area.

- The agricultural sector is modeled using a Cobb-Douglas production function
- The production model captures the relationship between agricultural output, labor demand, and harvested area.

For crop c in region i at time t:

$$Y_{c,i,t} = \underbrace{\widetilde{A_{c,i}}}_{\mathsf{TFP}} \underbrace{\widetilde{N_{c,i,t}}}_{\mathsf{harvested area}} \underbrace{H_{c,i,t}}_{\mathsf{harvested area}} \tag{8}$$

Production affected by weather shocks during the growing season

- Production affected by weather shocks during the growing season
- Delayed effects of weather shocks on yields are captured using a crop-specific growing season duration  $(T_c)$ .

- Production affected by weather shocks during the growing season
- Delayed effects of weather shocks on yields are captured using a crop-specific growing season duration  $(T_c)$ .

- Production affected by weather shocks during the growing season
- Delayed effects of weather shocks on yields are captured using a crop-specific growing season duration  $(T_c)$ .

$$H_{c,i,t} \le L_{c,i,t} \exp\left(\sum_{h=0}^{T_c} \beta_{c,h} W_{i,t-h}\right) \tag{9}$$

lacksquare  $H_{c,i,t}$ : Harvested area for crop c in region i at time t

- Production affected by weather shocks during the growing season
- Delayed effects of weather shocks on yields are captured using a crop-specific growing season duration  $(T_c)$ .

$$H_{c,i,t} \le L_{c,i,t} \exp\left(\sum_{h=0}^{T_c} \beta_{c,h} W_{i,t-h}\right) \tag{9}$$

- lacksquare  $H_{c,i,t}$ : Harvested area for crop c in region i at time t
- lacksquare  $L_{c,i,t}$ : Planted land surface for crop c in region i at time t

- Production affected by weather shocks during the growing season
- Delayed effects of weather shocks on yields are captured using a crop-specific growing season duration  $(T_c)$ .

$$H_{c,i,t} \le L_{c,i,t} \exp\left(\sum_{h=0}^{T_c} \beta_{c,h} W_{i,t-h}\right) \tag{9}$$

- $\blacksquare$   $H_{c,i,t}$ : Harvested area for crop c in region i at time t
- lacksquare  $L_{c.i.t}$ : Planted land surface for crop c in region i at time t
- lacksquare  $eta_{c,h}$ : Elasticity of weather shock on crop production at time h

- Production affected by weather shocks during the growing season
- Delayed effects of weather shocks on yields are captured using a crop-specific growing season duration  $(T_c)$ .

$$H_{c,i,t} \le L_{c,i,t} \exp\left(\sum_{h=0}^{T_c} \beta_{c,h} W_{i,t-h}\right) \tag{9}$$

- $\blacksquare$   $H_{c.i.t}$ : Harvested area for crop c in region i at time t
- lacksquare  $L_{c,i,t}$ : Planted land surface for crop c in region i at time t
- lacksquare  $eta_{c,h}$ : Elasticity of weather shock on crop production at time h
- $lackbox{W}_{i,t-h}$ : Weather shocks realized in region i at time t-h

■ In log: percentage deviation of agricultural production.

- In log: percentage deviation of agricultural production.
- The log-linearized equation includes the effects of crop-specific total factor productivity, weather shock, and labor demand.

- In log: percentage deviation of agricultural production.
- The log-linearized equation includes the effects of crop-specific total factor productivity, weather shock, and labor demand.

- In log: percentage deviation of agricultural production.
- The log-linearized equation includes the effects of crop-specific total factor productivity, weather shock, and labor demand.

$$\ln\left(\frac{Y_{c,i,t}}{L_{c,i,t}}\right) = \ln\left(A_{c,i}\right) + \sum_{h=0}^{T_c} \frac{\beta_{c,h} W_{i,t-h}}{\beta_{c,h} W_{i,t-h}} + \ln\left(N_{c,i,t}\right)$$
(10)

 $\blacksquare ln(Y_{c,i,t}/L_{c,i,t})$  : Percentage deviation of agricultural production from its potential value

- In log: percentage deviation of agricultural production.
- The log-linearized equation includes the effects of crop-specific total factor productivity, weather shock, and labor demand.

$$\ln\left(\frac{Y_{c,i,t}}{L_{c,i,t}}\right) = \ln\left(A_{c,i}\right) + \sum_{h=0}^{T_c} \frac{\beta_{c,h} W_{i,t-h}}{M_{c,t-h}} + \ln\left(N_{c,i,t}\right)$$
(10)

- $ln(Y_{c,i,t}/L_{c,i,t})$ : Percentage deviation of agricultural production from its potential value
- $ln(A_{c,i})$ : Log of crop-regional total factor productivity

- In log: percentage deviation of agricultural production.
- The log-linearized equation includes the effects of crop-specific total factor productivity, weather shock, and labor demand.

$$\ln\left(\frac{Y_{c,i,t}}{L_{c,i,t}}\right) = \ln\left(A_{c,i}\right) + \sum_{h=0}^{T_c} \beta_{c,h} W_{i,t-h} + \ln\left(N_{c,i,t}\right)$$
(10)

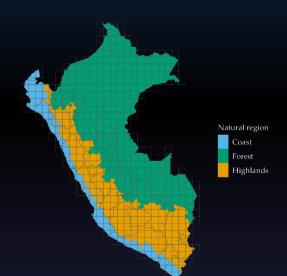
- $ln(Y_{c,i,t}/L_{c,i,t})$ : Percentage deviation of agricultural production from its potential value
- $\blacksquare ln(A_{c,i})$ : Log of crop-regional total factor productivity
- lacksquare  $eta_{c,h}$ : Elasticity of weather shock on crop production at time h

- In log: percentage deviation of agricultural production.
- The log-linearized equation includes the effects of crop-specific total factor productivity, weather shock, and labor demand.

$$\ln\left(\frac{Y_{c,i,t}}{L_{c,i,t}}\right) = \ln\left(A_{c,i}\right) + \sum_{h=0}^{T_c} \beta_{c,h} W_{i,t-h} + \ln\left(N_{c,i,t}\right)$$
(10)

- $ln(Y_{c,i,t}/L_{c,i,t})$ : Percentage deviation of agricultural production from its potential value
- ullet  $ln(A_{c,i})$ : Log of crop-regional total factor productivity
- lacksquare  $eta_{c,h}$ : Elasticity of weather shock on crop production at time h
- $\blacksquare ln(N_{c,i,t})$ : Log of labor demand

# Natural Regions



■ We do not use yields: for some months, the surface is zero

- We do not use yields: for some months, the surface is zero
- Instead: percentage deviation from monthly average, in five steps

- We do not use yields: for some months, the surface is zero
- Instead: percentage deviation from monthly average, in five steps
- Estimating Weather Shock Contributions:

$$\Gamma_{c,i,t,h} = \beta_{c,h}^T T_{i,t-h} + \beta_{c,h}^P P_{i,t-h}$$
 (11)

- We do not use yields: for some months, the surface is zero
- Instead: percentage deviation from monthly average, in five steps
- Estimating Weather Shock Contributions:

$$\Gamma_{c,i,t,h} = \beta_{c,h}^T T_{i,t-h} + \beta_{c,h}^P P_{i,t-h}$$
 (11)

Calculating Quantity Weights: production in monetary terms

$$\omega_{c,t} = \sum_{i} y_{c,t,i}^{\mathsf{raw}} \times p_c, \tag{12}$$

 $y_{c,t,i}^{\rm raw}$ : raw agricultural production in tons  $p_c$ : average selling price of crop c

Weather-Adjusted Agricultural Production:

$$y_{c,t}^{\omega} = \sum_{h} \sum_{i} \frac{1_{\mathsf{signif}_{c,i,t,h}} \times \Gamma_{c,i,t,h} \times \omega_{c,t}}{\mathsf{card}(I_{c,t})},\tag{13}$$

Weather-Adjusted Agricultural Production:

$$y_{c,t}^{\omega} = \sum_{h} \sum_{i} \frac{1_{\mathsf{signif}_{c,i,t,h}} \times \Gamma_{c,i,t,h} \times \omega_{c,t}}{\mathsf{card}(I_{c,t})},\tag{13}$$

4 Aggregating Crop-Specific Production:

$$y_t^{\omega} = \frac{\sum_c y_{c,t}^{\omega}}{\sum_c \omega_{c,t}},\tag{14}$$

 $\omega_{c,t}$ : the quantity weights computed in step 2

**3** Weather-Adjusted Agricultural Production:

$$y_{c,t}^{\omega} = \sum_{h} \sum_{i} \frac{1_{\mathsf{signif}_{c,i,t,h}} \times \Gamma_{c,i,t,h} \times \omega_{c,t}}{\mathsf{card}(I_{c,t})}, \tag{13}$$

Aggregating Crop-Specific Production:

$$y_t^{\omega} = \frac{\sum_c y_{c,t}^{\omega}}{\sum_c \omega_{c,t}},\tag{14}$$

 $\omega_{c,t}$ : the quantity weights computed in step 2

**5** Expressing Weather-Adjusted Production as a Deviation from Trend:

$$WCAL_t = -100 \times (y_t^{\omega} - \overline{y_t^{\omega}}). \tag{15}$$

#### VAR Data

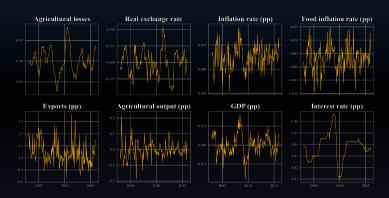


Figure 10: Series used in the Vector Auto-regressive Model