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From Uncertainty to Precision:Enhancing Binary Classifier Performance through Calibration.
Introduction

Calibration: intuition (1/2)

“There is a 30% chance
of rain tomorrow.”
(Dawid, 1982)

Figure 1: Weather Forecasts on Tuesday, March 2024. Source:
The Weather Channel.

Consider a sequence of weather forecasts ̂𝑠(x𝑡), where 𝑡 = 1, … , 𝑇 denotes the days of
forecast and x represents characteristics used in forecasting.
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Introduction

Calibration: intuition (2/2)

Within this sequence, we focus on days where ̂𝑠(x𝑖) closely approximates 30%.

By assuming an infinite sequence, we can determine the long-term proportion 𝑝 of days
where the forecasted event actually occurred.
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Introduction

Motivations

We are interested in being able to discriminate between rainy/not rainy days.

We are also interested in the underlying risk. Other examples include:

does this patient have a disease or not (Van Calster et al., 2019)?

will this insured have an accident within the next year?

what is the probability for this individual to receive the treatment/control?

In such cases, it is important that the estimated scores can be interpreted as
probabilities.

This might become a problem when using machine learning classifiers based on
ensemble methods.
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This Talk

What the remainder of the talk is about:

Reviewing of ways to measure and visualise calibration for a binary classifier.

Proposing a new metric based on local regression: the Local Calibration Score.

Observing the impact of a poor calibration on standard performance metrics.

Examining calibration for tree-based methods.
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Take away results

Our new metric, the local calibration score offers a more flexible way to visualise
and measure calibration than methods based on empirical quantiles.

Calibration matters: when training classifiers, looking at calibration of models
should not be disregarded.
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Roadmad

1 Introduction

2 Calibration

Definition

Measuring Calibration

3 Impact of Poor Calibration

4 Calibration and Tree-Based Methods
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Calibration

Setup

Let us consider a binary event 𝐷 whose observations are denoted 𝑑𝑖 = 1 if the
event occurs, and 𝑑𝑖 = 0 otherwise, where 𝑖 denotes the 𝑖th observations.

Let us further assume that the (unobserved) probability of the event 𝑑𝑖 = 1
depends on individual characteristics:

𝑝𝑖 = 𝑠(x𝑖)

where, with sample size 𝑛 > 0, 𝑖 = 1, … , 𝑛 represents individuals, and x𝑖 the
characteristics.
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Predicting risks

To estimate this probability, we can use a statistical model (e.g., a GLM) or a
machine learning model (e.g., a random forest).

These models estimate a score, ̂𝑠(x𝑖) ∈ [0, 1], allowing the classification of
observations based on the estimated probability of the event.

By setting a probability threshold 𝜏 in [0, 1], one can predict the class of each
observation: 1 if the event occurs, and 0 otherwise:

̂𝑑𝑖 = {1, if ̂𝑠(x𝑖) ≥ 𝜏
0, if ̂𝑠(x𝑖) < 𝜏 .

However, if the model is not well calibrated, the scores cannot be interpreted as
probabilities.
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Definition
Calibration of a Binary Classifier (Schervish, 1989)
For a binary variable 𝐷, a model is well-calibrated when

𝔼[𝐷 ∣ ̂𝑠(X) = 𝑝] = 𝑝, ∀𝑝 ∈ [0, 1] . (1)

Note: conditioning by { ̂𝑠(x) = 𝑝} leads to the concept of (local) calibration; however,
as discussed by Bai et al., 2021, { ̂𝑠(x) = 𝑝} is a.s. a null mass event. Thus,
calibration should be understood in the sense that

𝔼[𝐷 ∣ ̂𝑠(X) = 𝑝] 𝑎.𝑠.→ 𝑝 when 𝑛 → ∞ ,

meaning that, asymptotically, the model is well-calibrated, or locally well-calibrated in
𝑝, for any 𝑝.
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Visual approach: calibration curve
Estimation of g(⋅) (which measures miscalibration on predicted scores ̂𝑠(x)):

g ∶ {[0, 1] → [0, 1]
𝑝 ↦ g(𝑝) ∶= 𝔼[𝐷 ∣ ̂𝑠(x) = 𝑝] . (2)

Challenge: having enough observations with identical scores is difficult.
Solution: grouping obs. into 𝐵 bins, defined by the quantiles of predicted scores:

The average of observed values ( ̄𝑑𝑏 with 𝑏 ∈ {1, … , 𝐵}), in each bin 𝑏 can then be
compared with the central value of the bin.

Calibration curve (reliability diagram (Wilks, 1990): middle of each bin on the
x-axis, averages of corresponding observations on the y-axis.

When the model is well-calibrated, all 𝐵 points lie on the bisector.
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Calibration

Metrics (1/2)
Expected Calibration Error or ECE (Pakdaman Naeini et al., 2015)

ECE =
𝐵

∑
𝑏=1

𝑛𝑏
𝑛 ∣ acc(𝑏) − conf(𝑏) ∣

where 𝑛 is the sample size, 𝑛𝑏 is the number of observations in bin 𝑏 ∈ {1, … , 𝐵}.

Accuracy acc(𝑏): The average of empirical
probabilities or fractions of correctly predicted
classes.

acc(𝑏) = 1
𝑛𝑏

∑
𝑖∈ℐ𝑏

𝟙 ̂𝑑𝑖=𝑑𝑖
(3)

The predicted class ̂𝑑𝑖 for observation 𝑖 is
determined based on a classification threshold
𝜏 ∈ [0, 1] where ̂𝑑𝑖 = 1 if ̂𝑠(x𝑖) ≥ 𝜏 and 0
otherwise.

Confidence conf(𝑏): Indicates the model’s
average confidence within bin 𝑏 by averaging
predicted scores.

conf(𝑏) = 1
𝑛𝑏

∑
𝑖∈ℐ𝑏

̂𝑠(x𝑖)
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Calibration

Metrics (2/2)
Brier Score (Brier, 1950)
The Brier Score does not depend on bins and is defined as:

𝐵𝑆 = 1
𝑛

𝑛
∑
𝑖=1

(𝑑𝑖 − ̂𝑠(x𝑖))2 (4)

where 𝑑𝑖 is the observed event and ̂𝑠(x𝑖) the estimated score.

Mean Squared Error (MSE)
By substituting the observed event 𝑑𝑖 by the true probability 𝑝𝑖 (which can only be observed in
an experimental setup), the metric becomes the MSE:

True MSE = 1
𝑛

𝑛
∑
𝑖=1

(𝑝𝑖 − ̂𝑠(x𝑖))2 (5)
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Calibration

Our Approach: Smoother Visualization Technique

We propose an alternative approach to visualize model calibration, aiming for a
smoother representation: local regression (Loader, 1999).

Measuring calibration consists in estimating a conditional expectation: a local
regression seems appropriate.

Local Regression have been disregarded in high dimensions due to poor properties,
but it is highly efficient in small dimensions, as in this case with only one
predictive feature, ̂𝑠(𝑥) ∈ [0, 1].
Given the number of data points, the precision of quantile binning can be
suboptimal when determining the appropriate bin count.

By contrast, with local regression, one can specify the percentage of nearest
neighbors, providing greater flexibility.
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Calibration

Our new metric: LCS

Local Calibration Score (LCS)
A local regression of degree 0, denoted as ̂𝑔, is fitted to the predicted scores ̂𝑠(x).
This fit is then applied to a vector of linearly spaced values within the interval [0, 1].
Each of these points is denoted by 𝑙𝑗, where 𝑗 ∈ {1, … , 𝐽}, with 𝐽 being the target
number of points on the visualization curve.
The LCS is defined as:

LCS =
𝐽

∑
𝑗=1

𝑤𝑗( ̂𝑔(𝑙𝑗) − 𝑙𝑗)
2, (6)

where 𝑤𝑗 is a weight defined as the density of the 𝑠𝑐𝑜𝑟𝑒 at 𝑙𝑗.

Note: Austin and Steyerberg, 2019 defined a similar metric using a L1 norm.
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Impact of Poor Calibration

Data Generating Process
We simulate binary observations as in Gutman et al., 2022:

𝐷𝑖 ∼ ℬ(𝑝𝑖),
where individual probabilities are obtained using a logistic sigmoid function:

𝑝𝑖 = 1
1 + exp(−𝜂𝑖)

,

𝜂𝑖 = ax𝑖 + 𝜀𝑖

with a = [𝑎1 𝑎2 𝑎3 𝑎4] = [0.1 0.05 0.2 −0.05] and
x𝑖 = [𝑥1,𝑖 𝑥2,𝑖 𝑥3,𝑖 𝑥4,𝑖]

⊤.

The observations x𝑖 are drawn from a 𝒰(0, 1) and 𝜀𝑖 ∼ 𝒩(0, 0.52).
A. Fernandes Machado, A. Charpentier, E. Flachaire, E. Gallic, F. Hu 18 / 28
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Forcing Poor Calibration

To simulate uncalibration, we generate samples of 2, 000 observations and we apply
(monotonous) transformations to the true probabilities, either on:

1 the latent probability 𝑝𝑖:

𝑝𝑢
𝑖 = ( 1

1 + exp(−𝜂𝑖)
)

𝛼
. (7)

2 the linear predictor 𝜂𝑖:

𝜂𝑢
𝑖 = 𝛾 × ((−0.1)𝑥1 + 0.05𝑥2 + 0.2𝑥3 − 0.05𝑥4 + 𝜀𝑖) . (8)

The resulting transformed probabilities are considered as the scores: ̂𝑠(x) ∶= 𝑝𝑢
𝑖
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Distortions
We examine variations in {1/3, 1, 3} for 𝛼 and 𝛾
For each of the 6 scenarios, we generate 200 samples of 2, 000 obs.
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Figure 2: Distorted Prob. as a Function of True Prob., Depending on the Value of 𝛼 (left) or 𝛾
(right)
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Impacts: Calibration Metrics
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Figure 3: Calibration Metrics on 200 Simulations for each Value of 𝛼 (top) or 𝛾 (bottom).



Impacts: Calibration Curves
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Figure 4: Calibration Curve Obtained with Local Regression, on 200 simulations for each Value
of 𝛼 (top) or 𝛾 (bottom). Distribution of the true probabilities are shown in the histograms
(gold for 𝑑 = 1, purple for 𝑑 = 0).



(Mis-)Calibration and standard metrics
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Figure 5: Standard Goodness of Fit Metrics on 200 Simulations for each Value of 𝛼 (top) or 𝛾
(bottom). The probability threshold is set to 𝜏 = 0.5.
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Calibration for Machine Learning Algorithms

With the promise of better performance from machine learning models, it can be
tempting to rely on these types of models, such as random forests or derivatives,
to estimate binary events.

However, the distribution of scores returned by these models can be far from the
distribution of the underlying probabilities.

Here we present an overview of the preliminary results we have obtained with
regression trees.

More results in the next version of the paper...

A. Fernandes Machado, A. Charpentier, E. Flachaire, E. Gallic, F. Hu 25 / 28



From Uncertainty to Precision:Enhancing Binary Classifier Performance through Calibration.
Calibration and Tree-Based Methods

Calibration for Machine Learning Algorithms

With the promise of better performance from machine learning models, it can be
tempting to rely on these types of models, such as random forests or derivatives,
to estimate binary events.

However, the distribution of scores returned by these models can be far from the
distribution of the underlying probabilities.

Here we present an overview of the preliminary results we have obtained with
regression trees.

More results in the next version of the paper...

A. Fernandes Machado, A. Charpentier, E. Flachaire, E. Gallic, F. Hu 25 / 28



From Uncertainty to Precision:Enhancing Binary Classifier Performance through Calibration.
Calibration and Tree-Based Methods

Calibration for Machine Learning Algorithms

With the promise of better performance from machine learning models, it can be
tempting to rely on these types of models, such as random forests or derivatives,
to estimate binary events.

However, the distribution of scores returned by these models can be far from the
distribution of the underlying probabilities.

Here we present an overview of the preliminary results we have obtained with
regression trees.

More results in the next version of the paper...

A. Fernandes Machado, A. Charpentier, E. Flachaire, E. Gallic, F. Hu 25 / 28



From Uncertainty to Precision:Enhancing Binary Classifier Performance through Calibration.
Calibration and Tree-Based Methods

Calibration for Machine Learning Algorithms

With the promise of better performance from machine learning models, it can be
tempting to rely on these types of models, such as random forests or derivatives,
to estimate binary events.

However, the distribution of scores returned by these models can be far from the
distribution of the underlying probabilities.

Here we present an overview of the preliminary results we have obtained with
regression trees.

More results in the next version of the paper...

A. Fernandes Machado, A. Charpentier, E. Flachaire, E. Gallic, F. Hu 25 / 28



From Uncertainty to Precision:Enhancing Binary Classifier Performance through Calibration.
Calibration and Tree-Based Methods

Trees

Are trees well calibrated?

Some learning algorithms are designed to yield well-calibrated probabilities. These
include decision trees, whose leaf probabilities are optimal on the training set
(Kull et al., 2017)

Earlier studies show that also classical methods such as decision trees, boosting,
SVMs and naive Bayes classifiers tend to be miscalibrated (Wenger et al., 2020)
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Preliminary Results: Calibration is not enough
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Figure 6: Distribution of true probabilities and estimated scores on validation set for trees of
interest, 𝑛 = 10, 000
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Wrap up

Our new metric, the local calibration score offers a more flexible way to visualise
and measure calibration than methods based on empirical quantiles.

Calibration matters: when training classifiers, looking at calibration of models
should not be disregarded.

Comments are welcome: ewen.gallic@univ-amu.fr
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(Mis-)Calibration and standard metrics

What are the impacts of miscalibration on standard metrics?

We will consider metrics based on the predictive performances calculated using a
confusion table:

Table 1: Confusion Table

Actual/Predicted Positive Negative
Positive TP FN
Negative FP TN

where
TPR = TP

TP + FN ; FPR = FP
FP + TN
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(Mis-)Calibration and standard metrics

Accuracy = TP + TN
N

Overall correctness of the model

Sensitivity = TP
TP + FN

Ability to correctly identify positive class

Specificity = 𝑇 𝑃𝑅 = TN
TN + FP

Ability to correctly identify negative class

AUC (Area Under Curve) TPR and TFP for various prob. threshold 𝜏
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